On the Geometry of Quadratic Second-Order Abel Ordinary Differential Equations


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper, we study the contact geometry of second-order ordinary differential equations that are quadratic in the highest derivative (the so-called quadratic Abel equations). Namely, we realize each quadratic Abel equation as the kernel of some nonlinear differential operator. This operator is defined by a quadratic form on the Cartan distribution in the 1-jet space. This observation makes it possible to establish a one-to-one correspondence between quadratic Abel equations and quadratic forms on Cartan distribution. Using this realization, we construct a contact-invariant {e}-structure associated with a nondegenerate Abel equation (i.e., the basis of vector fields that is invariant under contact transformations). Finally, in terms of this {e}-structure we solve the problem of contact equivalence of nondegenerate Abel equations

Sobre autores

P. Bibikov

Trapeznikov Institute of Control Sciences RAS

Autor responsável pela correspondência
Email: tsdtp4u@proc.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2017