On the Geometry of Quadratic Second-Order Abel Ordinary Differential Equations


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, we study the contact geometry of second-order ordinary differential equations that are quadratic in the highest derivative (the so-called quadratic Abel equations). Namely, we realize each quadratic Abel equation as the kernel of some nonlinear differential operator. This operator is defined by a quadratic form on the Cartan distribution in the 1-jet space. This observation makes it possible to establish a one-to-one correspondence between quadratic Abel equations and quadratic forms on Cartan distribution. Using this realization, we construct a contact-invariant {e}-structure associated with a nondegenerate Abel equation (i.e., the basis of vector fields that is invariant under contact transformations). Finally, in terms of this {e}-structure we solve the problem of contact equivalence of nondegenerate Abel equations

作者简介

P. Bibikov

Trapeznikov Institute of Control Sciences RAS

编辑信件的主要联系方式.
Email: tsdtp4u@proc.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2017