On Convergence of the Accelerated Newton Method Under Generalized Lipschitz Conditions


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the problem of local convergence of the accelerated Newton method for the solution of nonlinear functional equations under generalized Lipschitz conditions for the first- and second-order Fréchet derivatives. We show that the accelerated method is characterized by the quadratic order of convergence and compare it with the classical Newton method.

Sobre autores

S. Shakhno

Franko Lviv National University

Email: Jade.Santos@springer.com
Ucrânia, Lviv

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2015