On Convergence of the Accelerated Newton Method Under Generalized Lipschitz Conditions
- Авторлар: Shakhno S.М.1
-
Мекемелер:
- Franko Lviv National University
- Шығарылым: Том 212, № 1 (2016)
- Беттер: 16-26
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/236965
- DOI: https://doi.org/10.1007/s10958-015-2645-5
- ID: 236965
Дәйексөз келтіру
Аннотация
We study the problem of local convergence of the accelerated Newton method for the solution of nonlinear functional equations under generalized Lipschitz conditions for the first- and second-order Fréchet derivatives. We show that the accelerated method is characterized by the quadratic order of convergence and compare it with the classical Newton method.
Негізгі сөздер
Авторлар туралы
S. Shakhno
Franko Lviv National University
Email: Jade.Santos@springer.com
Украина, Lviv
Қосымша файлдар
