On Boundedness of Bergman Projection Operators in Banach Spaces of Holomorphic Functions in Half-Plane and Harmonic Functions in Half-Space
- Авторлар: Karapetyants A.1,2, Samko S.3
-
Мекемелер:
- Southern Federal University
- Don State Technical University
- Universidade do Algarve
- Шығарылым: Том 226, № 4 (2017)
- Беттер: 344-354
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239986
- DOI: https://doi.org/10.1007/s10958-017-3538-6
- ID: 239986
Дәйексөз келтіру
Аннотация
We present a simple proof of the boundedness of holomorphic and harmonic Bergman projection operators on a half-plane and a half-space respectively on the Orlicz space, the variable exponent Lebesgue space, and the variable exponent generalized Morrey space. The approach is based on an idea due to V. P. Zaharyuta and V. I. Yudovich (1962) to use Calderón–Zygmund operators for proving the boundedness of the Bergman projection in Lebesgue spaces on the unit disc. We also study the rate of growth of functions near the boundary in the spaces under consideration.
Авторлар туралы
A. Karapetyants
Southern Federal University; Don State Technical University
Хат алмасуға жауапты Автор.
Email: karapetyants@gmail.com
Ресей, 105, B. Sadovaia St., Rostov-on-Don, 344006; 1, pl. Gagarina, Rostov-on-Don, 344010
S. Samko
Universidade do Algarve
Email: karapetyants@gmail.com
Португалия, Campus de Gambelas, Faro, 8005-139
Қосымша файлдар
