On Boundedness of Bergman Projection Operators in Banach Spaces of Holomorphic Functions in Half-Plane and Harmonic Functions in Half-Space


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We present a simple proof of the boundedness of holomorphic and harmonic Bergman projection operators on a half-plane and a half-space respectively on the Orlicz space, the variable exponent Lebesgue space, and the variable exponent generalized Morrey space. The approach is based on an idea due to V. P. Zaharyuta and V. I. Yudovich (1962) to use Calderón–Zygmund operators for proving the boundedness of the Bergman projection in Lebesgue spaces on the unit disc. We also study the rate of growth of functions near the boundary in the spaces under consideration.

作者简介

A. Karapetyants

Southern Federal University; Don State Technical University

编辑信件的主要联系方式.
Email: karapetyants@gmail.com
俄罗斯联邦, 105, B. Sadovaia St., Rostov-on-Don, 344006; 1, pl. Gagarina, Rostov-on-Don, 344010

S. Samko

Universidade do Algarve

Email: karapetyants@gmail.com
葡萄牙, Campus de Gambelas, Faro, 8005-139

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, 2017