On Boundedness of Bergman Projection Operators in Banach Spaces of Holomorphic Functions in Half-Plane and Harmonic Functions in Half-Space
- 作者: Karapetyants A.1,2, Samko S.3
-
隶属关系:
- Southern Federal University
- Don State Technical University
- Universidade do Algarve
- 期: 卷 226, 编号 4 (2017)
- 页面: 344-354
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239986
- DOI: https://doi.org/10.1007/s10958-017-3538-6
- ID: 239986
如何引用文章
详细
We present a simple proof of the boundedness of holomorphic and harmonic Bergman projection operators on a half-plane and a half-space respectively on the Orlicz space, the variable exponent Lebesgue space, and the variable exponent generalized Morrey space. The approach is based on an idea due to V. P. Zaharyuta and V. I. Yudovich (1962) to use Calderón–Zygmund operators for proving the boundedness of the Bergman projection in Lebesgue spaces on the unit disc. We also study the rate of growth of functions near the boundary in the spaces under consideration.
作者简介
A. Karapetyants
Southern Federal University; Don State Technical University
编辑信件的主要联系方式.
Email: karapetyants@gmail.com
俄罗斯联邦, 105, B. Sadovaia St., Rostov-on-Don, 344006; 1, pl. Gagarina, Rostov-on-Don, 344010
S. Samko
Universidade do Algarve
Email: karapetyants@gmail.com
葡萄牙, Campus de Gambelas, Faro, 8005-139
补充文件
