Spread of Values of a Cantor-Type Fractal Continuous Nonmonotone Function


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

By using the \( {Q}_5^{\ast } \)-representation of numbers

\( \left[0,1\right]\ni x={\beta}_{\alpha_1(x)1}+\sum \limits_{k=2}^{\infty}\left({\beta}_{\alpha_k(x)k}\prod \limits_{j=1}^{k-1}{q}_{\alpha_j(x)j}\right)={\Delta}_{\alpha_1(x){\alpha}_2(x)\dots {\alpha}_k(x)\dots}^{Q_5^{\ast }} \)

determined by the quinary alphabet A5 ≡ {0, 1, 2, 3, 4} and an infinite stochastic matrix ‖qik‖, i ∈ A5, k ∈ N, with positive elements (q0k + q1k + q2k + q3k + q4k = 1) such that \( {\prod}_{k=1}^{\infty}\underset{i}{\max}\left\{{q}_{ik}\right\}=0 \) and β0k = 0, βi + 1, k = βik + qik, \( i=\overline{0,4} \), we define a continuous Cantor-type function by the equality

\( f\left({\Delta}_{\alpha_1\dots {\alpha}_k\dots}^{Q_5^{\ast }}\right)={\delta}_{\alpha_1(x)1}+\sum \limits_{k=2}^{\infty}\left({\delta}_{\alpha_k(x)k}\sum \limits_{j=1}^{k-1}{g}_{\alpha_j(x)j}\right)\equiv {\Delta}_{\alpha_1(x)\dots {\alpha}_k(x)\dots}^G, \)

where δ0n = 0, \( {\delta}_{1n}=\frac{2+{\varepsilon}_n}{4} \), \( {\delta}_{2n}=\frac{2}{4}={\delta}_{3n} \), and \( {\delta}_{4n}=\frac{2-{\varepsilon}_n}{4} \), i.e., δi + 1, n = δin + gin, n ∈ N, and (εn) is a given sequence of real numbers such that 0 ≤ εn ≤ 1. We prove that this function is well defined and continuous. Moreover, it does not have intervals of monotonicity, except the intervals where it is constant. A criterion of bounded variation of the function is also established. We are especially interested in the problem of level sets of the function and in the topological and metric properties of the images of Cantor-type sets.

About the authors

M. V. Prats’ovytyi

Drahomanov National Pedagogic University

Author for correspondence.
Email: prats4444@gmail.com
Ukraine, Pyrohov Str., 9, Kyiv, 01601

O. V. Svynchuk

Drahomanov National Pedagogic University

Email: prats4444@gmail.com
Ukraine, Pyrohov Str., 9, Kyiv, 01601

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Springer Science+Business Media, LLC, part of Springer Nature