Limiting profile of solutions of quasilinear parabolic equations with flat peaking


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper deals with energy (weak) solutions u (t; x) of the class of equations with the model representative

\( \left(\left|u\right|{p}^{-1}u\right)t-\Delta p(u)=0,\kern0.5em \left(t,x\right)\in \left(0,T\right)\times \varOmega, \varOmega \in {\mathrm{\mathbb{R}}}^n,n\ge 1,p>0, \)

and with the following blow-up condition for the energy:

\( \varepsilon (t):= {\int}_{\Omega}{\left|u\left(t,x\right)\right|}^{p+1} dx+{\int}_0^t{\int}_{\Omega}{\left|{\nabla}_xu\left(\tau, x\right)\right|}^{p+1} dx d\tau \to \infty \mathrm{as}\;t\to T, \)

where Ω is a smooth bounded domain. In the case of flat peaking, namely, under the condition

\( {\displaystyle \begin{array}{cc}\varepsilon (t)\le F\upalpha (t){\upomega}_0{\left(T-t\right)}^{-\upalpha}& \forall t0,\upalpha >\frac{1}{p+1}, \)

a sharp estimate of the profile of a solution has been obtained in a neighborhood of the blow-up time t = T.

Авторлар туралы

Yevgeniia Yevgenieva

Institute of Applied Mathematics and Mechanics of the NAS of Ukraine

Хат алмасуға жауапты Автор.
Email: yevgeniia.yevgenieva@gmail.com
Украина, Slavyansk

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018