Limiting profile of solutions of quasilinear parabolic equations with flat peaking


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper deals with energy (weak) solutions u (t; x) of the class of equations with the model representative

\( \left(\left|u\right|{p}^{-1}u\right)t-\Delta p(u)=0,\kern0.5em \left(t,x\right)\in \left(0,T\right)\times \varOmega, \varOmega \in {\mathrm{\mathbb{R}}}^n,n\ge 1,p>0, \)

and with the following blow-up condition for the energy:

\( \varepsilon (t):= {\int}_{\Omega}{\left|u\left(t,x\right)\right|}^{p+1} dx+{\int}_0^t{\int}_{\Omega}{\left|{\nabla}_xu\left(\tau, x\right)\right|}^{p+1} dx d\tau \to \infty \mathrm{as}\;t\to T, \)

where Ω is a smooth bounded domain. In the case of flat peaking, namely, under the condition

\( {\displaystyle \begin{array}{cc}\varepsilon (t)\le F\upalpha (t){\upomega}_0{\left(T-t\right)}^{-\upalpha}& \forall t0,\upalpha >\frac{1}{p+1}, \)

a sharp estimate of the profile of a solution has been obtained in a neighborhood of the blow-up time t = T.

Sobre autores

Yevgeniia Yevgenieva

Institute of Applied Mathematics and Mechanics of the NAS of Ukraine

Autor responsável pela correspondência
Email: yevgeniia.yevgenieva@gmail.com
Ucrânia, Slavyansk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018