Asymptotics of the Jordan Normal Form of a Random Nilpotent Matrix
- Autores: Petrov F.V.1, Sokolov V.V.2
-
Afiliações:
- St. Petersburg Department of Steklov Institute of Mathematics
- St. Petersburg State Univeristy
- Edição: Volume 224, Nº 2 (2017)
- Páginas: 339-344
- Seção: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239577
- DOI: https://doi.org/10.1007/s10958-017-3419-z
- ID: 239577
Citar
Resumo
We study the Jordan normal form of an upper triangular matrix constructed from a random acyclic graph or a random poset. Some limit theorems and concentration results for the number and sizes of Jordan blocks are obtained. In particular, we study a linear algebraic analog of Ulam’s longest increasing subsequence problem.
Sobre autores
F. Petrov
St. Petersburg Department of Steklov Institute of Mathematics
Autor responsável pela correspondência
Email: fedyapetrov@gmail.com
Rússia, St. Petersburg
V. Sokolov
St. Petersburg State Univeristy
Email: fedyapetrov@gmail.com
Rússia, St. Petersburg
Arquivos suplementares
