Asymptotics of the Jordan Normal Form of a Random Nilpotent Matrix
- 作者: Petrov F.V.1, Sokolov V.V.2
-
隶属关系:
- St. Petersburg Department of Steklov Institute of Mathematics
- St. Petersburg State Univeristy
- 期: 卷 224, 编号 2 (2017)
- 页面: 339-344
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239577
- DOI: https://doi.org/10.1007/s10958-017-3419-z
- ID: 239577
如何引用文章
详细
We study the Jordan normal form of an upper triangular matrix constructed from a random acyclic graph or a random poset. Some limit theorems and concentration results for the number and sizes of Jordan blocks are obtained. In particular, we study a linear algebraic analog of Ulam’s longest increasing subsequence problem.
作者简介
F. Petrov
St. Petersburg Department of Steklov Institute of Mathematics
编辑信件的主要联系方式.
Email: fedyapetrov@gmail.com
俄罗斯联邦, St. Petersburg
V. Sokolov
St. Petersburg State Univeristy
Email: fedyapetrov@gmail.com
俄罗斯联邦, St. Petersburg
补充文件
