Typicality of Chaotic Fractal Behavior of Integral Vortices in Hamiltonian Systems with Discontinuous Right Hand Side
- Авторы: Zelikin M.I.1, Lokutsievskii L.V.1, Hildebrand R.2
-
Учреждения:
- M. V. Lomonosov Moscow State University
- Weierstrass Institute for Applied Analysis and Stochastics
- Выпуск: Том 221, № 1 (2017)
- Страницы: 1-136
- Раздел: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/238957
- DOI: https://doi.org/10.1007/s10958-017-3221-y
- ID: 238957
Цитировать
Аннотация
In this paper, we consider linear-quadratic deterministic optimal control problems where the controls take values in a two-dimensional simplex. The phase portrait of the optimal synthesis contains second-order singular extremals and exhibits modes of infinite accumulations of switchings in a finite time, so-called chattering. We prove the presence of an entirely new phenomenon, namely, the chaotic behavior of bounded pieces of optimal trajectories. We find the hyperbolic domains in the neighborhood of a homoclinic point and estimate the corresponding contraction-extension coefficients. This gives us a possibility of calculating the entropy and the Hausdorff dimension of the nonwandering set, which appears to have a Cantor-like structure as in Smale’s horseshoe. The dynamics of the system is described by a topological Markov chain. In the second part it is shown that this behavior is generic for piecewise smooth Hamiltonian systems in the vicinity of a junction of three discontinuity hyper-surface strata.
Об авторах
M. Zelikin
M. V. Lomonosov Moscow State University
Автор, ответственный за переписку.
Email: mzelikin@mtu-net.ru
Россия, Moscow
L. Lokutsievskii
M. V. Lomonosov Moscow State University
Email: mzelikin@mtu-net.ru
Россия, Moscow
R. Hildebrand
Weierstrass Institute for Applied Analysis and Stochastics
Email: mzelikin@mtu-net.ru
Германия, Berlin
Дополнительные файлы
