Typicality of Chaotic Fractal Behavior of Integral Vortices in Hamiltonian Systems with Discontinuous Right Hand Side


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper, we consider linear-quadratic deterministic optimal control problems where the controls take values in a two-dimensional simplex. The phase portrait of the optimal synthesis contains second-order singular extremals and exhibits modes of infinite accumulations of switchings in a finite time, so-called chattering. We prove the presence of an entirely new phenomenon, namely, the chaotic behavior of bounded pieces of optimal trajectories. We find the hyperbolic domains in the neighborhood of a homoclinic point and estimate the corresponding contraction-extension coefficients. This gives us a possibility of calculating the entropy and the Hausdorff dimension of the nonwandering set, which appears to have a Cantor-like structure as in Smale’s horseshoe. The dynamics of the system is described by a topological Markov chain. In the second part it is shown that this behavior is generic for piecewise smooth Hamiltonian systems in the vicinity of a junction of three discontinuity hyper-surface strata.

Sobre autores

M. Zelikin

M. V. Lomonosov Moscow State University

Autor responsável pela correspondência
Email: mzelikin@mtu-net.ru
Rússia, Moscow

L. Lokutsievskii

M. V. Lomonosov Moscow State University

Email: mzelikin@mtu-net.ru
Rússia, Moscow

R. Hildebrand

Weierstrass Institute for Applied Analysis and Stochastics

Email: mzelikin@mtu-net.ru
Alemanha, Berlin

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2017