Spatially Inhomogeneous Solutions for a Modified Kuramoto–Sivashinsky Equation
- Авторлар: Kulikov A.N.1, Kulikov D.A.1
-
Мекемелер:
- Demidov Yaroslavl State University
- Шығарылым: Том 219, № 2 (2016)
- Беттер: 173-183
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/238508
- DOI: https://doi.org/10.1007/s10958-016-3094-5
- ID: 238508
Дәйексөз келтіру
Аннотация
We study the periodic boundary value problem for a modified Kuramoto–Sivashinsky equation which can serve as a mathematical model describing formation of nanorelief on the surface of a planar target under the action of ion flux. We show that, as in the case of the traditional Kuramoto–Sivashinsky equation, it is possible to obtain spatially inhomogeneous solutions under the condition that the homogeneous equilibrium states can change the stability. We consider local bifurcations. We find sufficient conditions for the existence of shortwave solutions. Bibliography: 11 titles.
Авторлар туралы
A. Kulikov
Demidov Yaroslavl State University
Хат алмасуға жауапты Автор.
Email: anat_kulikov@mail.ru
Ресей, 14, Sovetskaya Str., Yaroslavl, 150000
D. Kulikov
Demidov Yaroslavl State University
Email: anat_kulikov@mail.ru
Ресей, 14, Sovetskaya Str., Yaroslavl, 150000
Қосымша файлдар
