Spatially Inhomogeneous Solutions for a Modified Kuramoto–Sivashinsky Equation
- 作者: Kulikov A.N.1, Kulikov D.A.1
-
隶属关系:
- Demidov Yaroslavl State University
- 期: 卷 219, 编号 2 (2016)
- 页面: 173-183
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/238508
- DOI: https://doi.org/10.1007/s10958-016-3094-5
- ID: 238508
如何引用文章
详细
We study the periodic boundary value problem for a modified Kuramoto–Sivashinsky equation which can serve as a mathematical model describing formation of nanorelief on the surface of a planar target under the action of ion flux. We show that, as in the case of the traditional Kuramoto–Sivashinsky equation, it is possible to obtain spatially inhomogeneous solutions under the condition that the homogeneous equilibrium states can change the stability. We consider local bifurcations. We find sufficient conditions for the existence of shortwave solutions. Bibliography: 11 titles.
作者简介
A. Kulikov
Demidov Yaroslavl State University
编辑信件的主要联系方式.
Email: anat_kulikov@mail.ru
俄罗斯联邦, 14, Sovetskaya Str., Yaroslavl, 150000
D. Kulikov
Demidov Yaroslavl State University
Email: anat_kulikov@mail.ru
俄罗斯联邦, 14, Sovetskaya Str., Yaroslavl, 150000
补充文件
