Lagrangian and Hamiltonian Duality
- Авторы: Rossi O.1,2,3, Saunders D.2
-
Учреждения:
- Department of Mathematics, Stockholm University
- Department of Mathematics, Faculty of Science, University of Ostrava
- Department of Mathematics and Statistics, La Trobe University
- Выпуск: Том 218, № 6 (2016)
- Страницы: 813-819
- Раздел: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/238357
- DOI: https://doi.org/10.1007/s10958-016-3069-6
- ID: 238357
Цитировать
Аннотация
We propose a setting for De Donder–Hamilton field theory in jet bundles, generalizing the usual multisymplectic formalism. Using a reformulation of Hamilton theory for the family of local Lagrangians related to a global Euler–Lagrange form, we construct a dual Hamiltonian bundle and corresponding Legendre maps, linking a Lagrangian system on a jet bundle with a canonical Hamiltonian system on the affine dual. Our approach significantly extends the family of regular variational problems that can be treated directly within a dual Hamiltonian formalism, thus avoiding the necessity to use the Dirac constraint formalism.
Об авторах
O. Rossi
Department of Mathematics, Stockholm University; Department of Mathematics, Faculty of Science, University of Ostrava; Department of Mathematics and Statistics, La Trobe University
Автор, ответственный за переписку.
Email: olga.rossi@osu.cz
Швеция, Stockholm; Ostrava; Melbourne
D. Saunders
Department of Mathematics, Faculty of Science, University of Ostrava
Email: olga.rossi@osu.cz
Чехия, Ostrava
Дополнительные файлы
