Lagrangian and Hamiltonian Duality


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We propose a setting for De Donder–Hamilton field theory in jet bundles, generalizing the usual multisymplectic formalism. Using a reformulation of Hamilton theory for the family of local Lagrangians related to a global Euler–Lagrange form, we construct a dual Hamiltonian bundle and corresponding Legendre maps, linking a Lagrangian system on a jet bundle with a canonical Hamiltonian system on the affine dual. Our approach significantly extends the family of regular variational problems that can be treated directly within a dual Hamiltonian formalism, thus avoiding the necessity to use the Dirac constraint formalism.

作者简介

O. Rossi

Department of Mathematics, Stockholm University; Department of Mathematics, Faculty of Science, University of Ostrava; Department of Mathematics and Statistics, La Trobe University

编辑信件的主要联系方式.
Email: olga.rossi@osu.cz
瑞典, Stockholm; Ostrava; Melbourne

D. Saunders

Department of Mathematics, Faculty of Science, University of Ostrava

Email: olga.rossi@osu.cz
捷克共和国, Ostrava

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016