Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 51, No 2 (2018)

Genesis and Geography of Soils

Soils of Low-Mountain Landscapes of North Karelia

Medvedeva M.V., Akhmetova G.V., Fedorets N.G., Yakovlev A.S., Raevskii B.V., Travin V.V.

Abstract

Soils of low-mountain landscapes in the northwest of Karelia have been studied. The soil cover of the studied area is mainly represented by Al–Fe-humus soils (Podzols); thin soils (Leptosols) are widespread. Characteristic morphological features of all the studied soils are relatively shallow profiles, high stone content, and underlying by hard bedrock with fine earth material in crevices between large boulders. The studied soils have the high carbon and low nitrogen content, which points to unfavorable conditions of organic matter transformation. The content of most macro- and microelements is not high, which is typical for soils of the region; the content of copper and zinc exceeds the regional background two–three times. Regularities of the vertical zonality in the properties of soils of mountain ecosystems manifest themselves in decreasing thickness of the soil profile at higher altitude above sea level in parallel to decreasing thickness of the layer of loose rocks, while the stone content increases. In soils of the forest-tundra zone, the organomineral horizon with the high organic matter content is formed immediately under the forest litter. The litter horizon is the soils of this zone is characterized by increased concentrations of calcium, magnesium, phosphorus, and zinc.

Eurasian Soil Science. 2018;51(2):131-139
pages 131-139 views

Soils of the Southwestern Part of the Pacific Coast of Russia

Kostenkov N.M., Zharikova E.A.

Abstract

The diversity of soils in the southwestern part of the Pacific coast of Russia (Primorie region) is discussed. Overall, 17 soil types belonging to 8 soil orders have been described in this region, and their morphology and properties have been studied. The diversity of plant communities, geomorphic conditions, and parent materials and relatively mild (as compared with other parts of the Far East region of Russia) specify the great variability of soil cover patterns. Low sea terraces are occupied by various peat, organo-accumulative, and gley soils; poorly drained medium-high terraces are the areas of various dark-humus and darkhumus gleyed soils. Typical and gleyic dark-humus podbels, dark-humus, and dark-humus gleyed soils formed on the high sea terraces. Residual elevations are occupied by brown forest (burozemic) soils, including typical burozems, dark-humus burozems, and gleyic dark-humus burozems and by dark-humus podbels. Various alluvial, gleyic gray-humus, and mucky gley soils are developed on riverine plains. On general, darkhumus soils with the high (>10%) humus content predominate; the area of dark-humus podbels us estimated at about 20%, and the area of dark-humus burozems is about 12%. All the soils in this region are specified by increased acidity values. The exchangeable sodium content is often high in the upper soil horizons with maximum values (0.71–1.19 cmol(c)/kg) in the peat gleyzems, peaty dark-humus soils, mucky-gley soils, and eutrophic peat soils of sea terraces. The grouping of the soils with respect to their physicochemical and agrochemical properties is suggested.

Eurasian Soil Science. 2018;51(2):140-152
pages 140-152 views

Soil Chemistry

Atmospheric Nitrogen Deposition and the Properties of Soils in Forests of Vologda Region

Kudrevatykh I.Y., Ivashchenko K.V., Ananyeva N.D., Ivanishcheva E.A.

Abstract

Twenty plots (20 m2 each) were selected in coniferous and mixed forests of the industrial Vologda district and the Vytegra district without developed industries in Vologda region. In March, snow cores corresponding to the snow cover depth were taken on these plots. In August, soil samples from the 0- to 20-cm layer of litter-free soddy-podzolic soil (Albic Retisol (Ochric)) were taken on the same plots in August. The content of mineral nitrogen (Nmin), including its ammonium (NH+4) and nitrate (NO-3) forms, was determined in the snow (meltwater) and soil. The contents of total organic carbon, total nitrogen, and elements (Al, Ca); pH; particle size distribution; and microbiological parameters―carbon of microbial biomass (Cmic) and microbial respiration (MR)―were determined in the soil. The ratio MR/Cmic = qCO2 (specific respiration of microbial biomass, or soil microbial metabolic quotient) was calculated. The content of Nmic in meltwater of two districts was 1.7 mg/L on the average (1.5 and 0.3 mg/L for the NH+4 and NO3 forms, respectively). The annual atmospheric deposition was 0.6–8.9 kg Nmin/ha, the value of which in the Vologda district was higher than in the Vytegra district by 40%. Reliable correlations were found between atmospheric NH+4 depositions and Cmic (–0.45), between NH+4 and qCO2 (0.56), between atmospheric NO-3 depositions and the soil NO-3 (–0.45), and between NO-3 and qCO2 (–0.58). The content of atmospheric Nmin depositions correlated with the ratios C/N (–0.46) and Al/Ca (–0.52) in the soil. In forests with the high input of atmospheric nitrogen (>2.0 kg NH+4/(ha yr) and >6.4 kg Nmin/(ha yr)), a tendency of decreasing Cmic, C/N, and Al/Ca, as well as increasing qCO2, was revealed, which could be indicative of deterioration in the functioning of microbial community and the chemical properties of the soil.

Eurasian Soil Science. 2018;51(2):153-162
pages 153-162 views

Iron Compounds and the Color of Soils in the Sakhalin Island

Vodyanitskii Y.N., Kirillova N.P., Manakhov D.V., Karpukhin M.M.

Abstract

Numerical parameters of soil color were studied according to the CIE-L*a*b color system before and after the Tamm’s and Mehra-Jackson’s treatments; we also determined the total Fe content in the samples from the main genetic horizons of the alluvial gray-humus soil, two profiles of burozems, and two profiles of podzols in the Sakhalin Island. In the analyzed samples, the numerical color parameters L* (lightness), a* (redness) and b* (yellowness) are found to vary within 46–73, 3–11, and 8–28, respectively. A linear relationship is revealed between the numerical values of a* parameters and Fe content in the Mehra-Jackson extracts; the regression equations are derived with the determination coefficients (R2): 0.49 (typical burozem), 0.79 (podzolized burozem), 0.96 (shallow-podzolic mucky podzol), 0.98 (gray-humus gley alluvial soil). For the surface-podzolic mucky podzol contaminated with petroleum hydrocarbons, R2 was equal to only 0.03. In the gray humus (AY) and structural-metamorphic (BM) horizons of the studied soils, a* and b* parameters decrease after their treatment with the Tamm’s reagent by 2 points on average. After the Mehra-Jackson treatment, the a* parameter decreased by 6 (AY) and 8 (BM) points; whereas b* parameter, by 10 and 15 points, respectively. In the E horizons of podzols, the Tamm’s treatment increased a* and b* parameters by 1 point; whereas the Mehra-Jackson’s treatment decreased these parameters by only 1 and 3 points, respectively. The redness (a*) decreased maximally in the lower gley horizon of the alluvial gray humus soil, i.e., by 6 (in the Tamm’s extract) and 10 points (in the Mehra-Jackson’s) extract. Yellowness (b*) decreased by 12 and 17 points, respectively. The revealed color specifics in the untreated samples and the color transformation under the impact of reagents in the studied soils and horizons may serve as an additional parameter that characterizes quantitatively the object of investigation in the reference databases.

Eurasian Soil Science. 2018;51(2):163-175
pages 163-175 views

Simulation of Nitrogen and Phosphorus Losses in Loess Landforms of Northern Iran

Kiani F., Behtarinejad B., Najafinejad A., Kaboli R.

Abstract

Population growth, urban expansion and intensive agriculture and thus increased use of fertilizers aimed at increasing the production capacity cause extensive loss of nutrients such as nitrogen and phosphorus and lead to reduced quality of soil and water. Therefore, identification of nutrients in the soil and their potential are essential. The aim of this study was to evaluate the capability of the SWAT model in simulating runoff, sediment, and nitrogen and phosphorus losses in Tamer catchment. Runoff and sediment measured at Tamar gauging station were used to calibrate and validate the model. Simulated values were generally consistent with the data observed during calibration and validation period (0.6 < R2 and 0.5 < NS). In the case of nitrogen loss, the model performed an almost good simulation (0.6 < R2 and 0.47 < NS), but phosphorus simulation yielded better results (0.76 < R2 and 0.66 < NS). The results showed that cultivated lands had higher loss of nitrogen and phosphorus than other types of land use. Among the various forms of nitrogen and phosphorus, the loss of organic nitrogen and nitrate and soluble phosphorus and mineral phosphorus attached to the sediments showed the greatest sensitivity to the type of land use. Results also showed that the average nutrient loss caused by erosion in this catchment, was 6.99 kg/ha for nitrogen, 0.35 kg/ha for nitrate, 1.3 kg/ha for organic phosphorus, 0.015 kg/ha for soluble phosphorus, and 0.45 kg/ha for mineral phosphorus.

Eurasian Soil Science. 2018;51(2):176-182
pages 176-182 views

Soil Physics

Modelling Thermal Diffusivity of Differently Textured Soils

Lukiashchenko K.I., Arkhangelskaya T.A.

Abstract

A series of models has been proposed for estimating thermal diffusivity of soils at different water contents. Models have been trained on 49 soil samples with the texture range from sands to silty clays. The bulk density of the studied soils varied from 0.86 to 1.82 g/cm3; the organic carbon was between 0.05 and 6.49%; the physical clay ranged from 1 to 76%. The thermal diffusivity of undisturbed soil cores measured by the unsteady-state method varied from 0.78×10–7 m2/s for silty clay at the water content of 0.142 cm3/cm3 to 10.09 × 10–7 m2/s for sand at the water content of 0.138 cm3/cm3. Each experimental curve was described by the four-parameter function proposed earlier. Pedotransfer functions were then developed to estimate the parameters of the thermal diffusivity vs. water content function from data on soil texture, bulk density, and organic carbon. Models were tested on 32 samples not included in the training set. The root mean square errors of the best-performing models were 17–38%. The models using texture data performed better than the model using only data on soil bulk density and organic carbon.

Eurasian Soil Science. 2018;51(2):183-189
pages 183-189 views

The Impact of Multiple Freeze–Thaw Cycles on the Microstructure of Aggregates from a Soddy-Podzolic Soil: A Microtomographic Analysis

Skvortsova E.B., Shein E.V., Abrosimov K.N., Romanenko K.A., Yudina A.V., Klyueva V.V., Khaidapova D.D., Rogov V.V.

Abstract

With the help of computed X-ray microtomography with a resolution of 2.75 μm, changes in the microstructure and pore space of aggregates of 3 mm in diameter from the virgin soddy-podzolic soil (Glossic Retisol (Loamic)) in the air-dry, capillary-moistened, and frozen states after five freeze–thaw cycles were studied in a laboratory experiment. The freezing of the samples was performed at their capillary moistening. It was shown that capillary moistening of initially air-dry samples from the humus (AY), eluvial (EL), and illuvial (BT1) horizons at room temperature resulted in the development of the platy, fine vesicular, and angular blocky microstructure, respectively. The total volume of tomographically visible pores >10 μm increased by 1.3, 2.2, and 3.4 times, respectively. After freeze–thaw cycles, frozen aggregates partly preserved the structural arrangement formed during the capillary moistening. At the same time, in the frozen aggregate from the AY horizon, the total tomographic porosity decreased to the initial level of the air-dry soil. In the frozen aggregate from the EL horizon, large vesicular pores were formed, owing to which the total pore volume retained its increased values. The resistance of aggregate shape to the action of freeze–thaw cycles differed. The aggregate from the EL horizon completely lost its original configuration by the end of the experiment. The aggregate from the AY horizon displayed definite features of sagging after five freeze–thaw cycles, whereas the aggregate from the BT1 horizon preserved its original configuration.

Eurasian Soil Science. 2018;51(2):190-198
pages 190-198 views

Linear Regression between CIE-Lab Color Parameters and Organic Matter in Soils of Tea Plantations

Chen Y., Zhang M., Fan D., Fan K., Wang X.

Abstract

To quantify the relationship between the soil organic matter and color parameters using the CIE-Lab system, 62 soil samples (0–10 cm, Ferralic Acrisols) from tea plantations were collected from southern China. After air-drying and sieving, numerical color information and reflectance spectra of soil samples were measured under laboratory conditions using an UltraScan VIS (HunterLab) spectrophotometer equipped with CIE-Lab color models. We found that soil total organic carbon (TOC) and nitrogen (TN) contents were negatively correlated with the L* value (lightness) (r = –0.84 and –0.80, respectively), a* value (correlation coefficient r = –0.51 and –0.46, respectively) and b* value (r = –0.76 and –0.70, respectively). There were also linear regressions between TOC and TN contents with the L* value and b* value. Results showed that color parameters from a spectrophotometer equipped with CIE-Lab color models can predict TOC contents well for soils in tea plantations. The linear regression model between color values and soil organic carbon contents showed it can be used as a rapid, cost-effective method to evaluate content of soil organic matter in Chinese tea plantations.

Eurasian Soil Science. 2018;51(2):199-203
pages 199-203 views

Soil Biology

Effect of Contrasting Trophic Conditions on the Priming Effect in Gray Forest Soils

Zhuravleva A.I., Alifanov V.M., Blagodatskaya E.V.

Abstract

Priming effects initiated by the addition of 14С glucose have been compared for humus horizons of soils existing under continuous input of fresh organic substrates and for buried soil horizons, in which entering of organic matter has been essentially limited. The effect of microrelief on the manifestation of priming effect in the humus horizons of gray forest soil on microhigh and in microlow has been estimated. Humus horizon in soils on microhigh, not activated by glucose, produced two times more СО2 in comparison with soils of microlow. However, the introduction of glucose canceled the effect of microrelief on СО2 emission. The intensity of absolute priming effect correlated with the Сorg pool, initial microbial biomass, and enzyme activity, decreasing from humus horizons to the buried ones, and did not depend on microrelief. The effect of microrelief was observed, when assessing the priming effect relative to control (soil not activated by glucose): the value of relative priming effect was 1.5 times greater in А horizon of gray forest soil in microlow in comparison with that on microhigh being the result of increasing activity of enzymes.

Eurasian Soil Science. 2018;51(2):204-210
pages 204-210 views

Algological and Mycological Characterization of Soils under Pine and Birch Forests in the Pasvik Reserve

Korneikova M.V., Redkina V.V., Shalygina R.R.

Abstract

The structure of algological and mycological complexes in Al–Fe-humus podzols (Albic Podzols) under pine and birch forests of the Pasvik Reserve is characterized. The number of micromycetes is higher in more acid soils of the pine forest, while the species diversity is greater under the birch forest. The genus Penicillium includes the largest number of species. The greatest abundance and occurrence frequency are typical for Penicillium spinulosum, P. glabrum, and Trichoderma viride in pine forest and for Umbelopsis isabellina, Mucor sp., Mortierella alpinа, P. glabrum, Aspergillus ustus, Trichoderma viride, and T. koningii in birch forest. Cyanobacteria–algal cenoses of the investigated soils are predominated by green algae. Soils under birch forest are distinguished by a greater diversity of algal groups due to the presence of diatoms and xanthophytes. Species of frequent occurrence are represented by Pseudococcomyxa simplex and Parietochloris alveolaris in soils of the pine forest and by Tetracystis cf. aplanospora, Halochlorella rubescens, Pseudococcomyxa simplex, Fottea stichococcoides, Klebsormidium flaccidum, Hantzschia amphioxys, Microcoleus vaginatus, and Aphanocapsa sp. in soils under birch forest

Eurasian Soil Science. 2018;51(2):211-220
pages 211-220 views

Degradation, Rehabilitation, and Conservation of Soils

Factors of the Development of Water Erosion in the Zone of Recreation Activity in the Ol’khon Region

Znamenskaya T.I., Vanteeva J.V., Solodyankina S.V.

Abstract

Specific features of water erosion of thin soils under conditions of nonpercolative water regime and intense recreational loads were studied in the Ol’khon region (Irkutsk oblast). An experiment on the transfer of terrigenous particles under the impact of rainfall simulation was performed. A thorough description of landscape characteristics affecting water erosion development was made. As a result, a multiple regression equation linking the transported matter with the slope steepness, projective cover of vegetation, the degree of vegetation degradation, and the fine sand content in the upper soil horizon was developed; the multiple correlation coefficient R reached 0.86. On this basis, the map of water erosion assessment for the study area was compiled with the use of landscape and topographic maps. The maximum intensity of water erosion is typical of the anthropogenically transformed landscapes on steep slopes with the low vegetative cover on the mountainous noncalcareous steppe soils and on thin loamy sandy surface-gravelly chestnut-like soils.

Eurasian Soil Science. 2018;51(2):221-228
pages 221-228 views

Effect of Palygorskite Clay, Fertilizers, and Lime on the Degradation of Oil Products in Oligotrophic Peat Soil under Laboratory Experimental Conditions

Tolpeshta I.I., Erkenova M.I.

Abstract

The effect of native palygorskite clay and that modified with dodecyltrimethylammonium chloride on the degradation of oil products in an oligotrophic peat soil under complete flooding at the application of lime and mineral fertilizers has been studied under laboratory conditions. It has been shown that the incubation of oil-contaminated soil with unmodified clay and fertilizers at the application of lime under complete flooding with water affects the dynamics of pH and Eh and slows the development of reducing conditions compared to the use of clay without fertilizers. The addition of organoclay under similar conditions favors the formation of potential-determining system with a high redox capacity, which is capable of retaining the potential on a level of 100–200 mV at pH ∼ 7 for two months. It has been found that, under the experimental conditions, unmodified and modified clay, which has no toxic effect on the bacterial complex, does not increase the biodegradation efficiency of oil products in the oligotrophic peat soil compared to the experimental treatments without clay addition. Possible reasons for no positive effect of palygorskite clay on the biodegradation rate of oil products under experimental conditions have been analyzed.

Eurasian Soil Science. 2018;51(2):229-240
pages 229-240 views

Postpyrogenic Polycyclic Soils in the Forests of Yakutia and Transbaikal region

Chevychelov A.P., Shakhmatova E.Y.

Abstract

Periodical forest fires are typical natural events under the environmental and climatic conditions of central and southern Yakutia and Transbaikal region of Russia. Strong surface fires activate exogenous geomorphological processes. As a result, soils with polycyclic profiles are developed in the trans-accumulative landscape positions. These soils are specified by the presence of two–three buried humus horizons with abundant charcoal under the modern humus horizon. This indicates that these soils have been subjected to two–three cycles of zonal pedogenesis during their development. The buried pyrogenic humus horizons accumulate are enriched in humus; nitrogen; total and oxalate-extractable iron; exchangeable bases (Са+2 and Mg+2); and the fractions of coarse silt, physical clay (<0.01 mm), and clay (<0.001 mm) particles in comparison with the neighboring mineral horizons of the soil profile. The humus of buried pyrogenic horizons is characterized by the increased content of humic acids, particularly, those bound with mobile sesquioxides (HA-1) and calcium (HA-2) and by certain changes in the type of humus.

Eurasian Soil Science. 2018;51(2):241-250
pages 241-250 views

Effect of Impact Angle on the Erosion Rate of Coherent Granular Soil, with a Chernozemic Soil as an Example

Dobrovol’skaya N.G., Kiryukhina Z.P., Krasnov S.F., Kobylchenko Kuksina L.V., Litvin L.F., Sudnitsyn I.I., Larionov G.A., Bushueva O.G., Gorobets A.V.

Abstract

It has been shown in experiments in a hydraulic flume with a knee-shaped bend that the rate of soil erosion more than doubles at the flow impact angles to the channel side from 0° to 50°. At higher channel bends, the experiment could not be performed because of backwater. Results of erosion by water stream approaching the sample surface at angles between 2° and 90° are reported. It has been found that the maximum erosion rate is observed at flow impact angles of about 45°, and the minimum rate at 90°. The minimum soil erosion rate is five times lower than the maximum erosion rate. This is due to the difference in the rate of free water penetration into the upper soil layer, and the impact of the hydrodynamic pressure, which is maximum at the impact angle of 90°. The penetration of water into the interaggregate space results in the breaking of bonds between aggregates, which is the main condition for the capture of particles by the flow.

Eurasian Soil Science. 2018;51(2):251-254
pages 251-254 views