Simulation of the local structure, properties of mixing, and stability of solid solutions BaxSr1–xCO3 by the interatomic potential method


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The strontianite (SrCO3)–witherite (BaCO3) solid solutions have been simulated using the interatomic potential method. The dependences of the unit cell parameters, the unit cell volume, and the bulk modulus on the composition of the solid solution have been constructed. It has been shown that the unit cell volume and the bulk modulus exhibit negative deviations from the additivity. An analysis of the local structure of the solid solutions has been carried out. It has been found that, for the equimolar composition of the BaxSr1–xCO3 solid solution, the relaxations of the barium and strontium positions are equal to 60 and 56%, respectively. It has been established that the enthalpy of mixing is positive and, for the equimolar composition of the solid solution, reaches a maximum value of 3.4 kJ/mol. The obtained results have been compared with the experimental data. The solvus of the BaxSr1–xCO3 system has been constructed based on the dependences of the Gibbs free energy on the composition in the temperature range from 300 to 1000 K.

作者简介

V. Dudnikova

Moscow State University

编辑信件的主要联系方式.
Email: VDudnikova@hotmail.com
俄罗斯联邦, Moscow, 119991

N. Eremin

Moscow State University

Email: VDudnikova@hotmail.com
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016