Crystal-Physical Model of Ion Transport in Nonlinear Optical Crystals of KTiOPO4


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The ionic conductivity along the principal axes a, b, and c of the unit cell of the nonlinear-optical high-resistance KTiOPO4 single crystals (rhombic syngony, space group Pna21), which are as-grown and after thermal annealing in vacuum, has been investigated by the method of impedance spectroscopy. The crystals were grown from a solution-melt by the Czochralski method. The as-grown KTiOPO4 crystals possess a quasi-one-dimensional conductivity along the crystallographic c axis, which is caused by the migration of K+ cations: σc = 1.0 × 10–5 S/cm at 573 K. Wherein the characteristics of the anisotropy of ionic conductivity of the crystals is equal to σca= 3 and σcb= 24. The thermal annealing at 1000 K for 10 h in vacuum increases the magnitude of σc of KTiOPO4 by a factor of 28 and leads to an increase in the ratio σcb= 2.1 × 103 at 573 K. A crystal-physical model of ionic transport in KTiOPO4 crystals has been proposed.

Sobre autores

N. Sorokin

Shubnikov Institute of Crystallography “Crystallography and Photonics”

Autor responsável pela correspondência
Email: nsorokin1@yandex.ru
Rússia, Moscow

Yu. Shaldin

Shubnikov Institute of Crystallography “Crystallography and Photonics”

Email: nsorokin1@yandex.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018