Defect silicene and graphene as applied to the anode of lithium-ion batteries: Numerical experiment


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Mechanical properties and stability of two layers of defect silicene supported by graphene sheets, between which the lithium ion passes under an electrostatic field, are studied by the molecular dynamics method. Defects are mono-, di-, tri-, and hexavacansies. Graphene and silicene edges are rigidly fixed. Graphene sheets contacting with silicene take a convex shape, deflecting outward. Mono- and divacancies in silicene tend to a size decrease; larger vacancies exhibit better stability. The ion motion control using an electric field becomes possible only using perfect silicene or silicene with mono- and divacancies. The ion penetrated through larger defects, and its motion in the silicene channel becomes uncontrolled. When the ion moves in the channel, the most strong stress spikes appear in silicene containing monovacancies. In the case of fixed edges, perfect silicene intercalated with a lithium ion is inclined to accumulate larger stresses than silicene containing defects.

About the authors

A. E. Galashev

Institute of High Temperature Electrochemistry

Email: Rakhmanova@ihte.uran.ru
Russian Federation, ul. Akademicheskaya 20, Yekaterinburg, 620137

O. R. Rakhmanova

Institute of High Temperature Electrochemistry

Author for correspondence.
Email: Rakhmanova@ihte.uran.ru
Russian Federation, ul. Akademicheskaya 20, Yekaterinburg, 620137

Yu. P. Zaikov

Ural Federal University after the first President of Russia B.N. Yeltsin

Email: Rakhmanova@ihte.uran.ru
Russian Federation, ul. Mira 19, Yekaterinburg, 620002

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.