Change in the magnetic properties of nanoferrihydrite with an increase in the volume of nanoparticles during low-temperature annealing
- Authors: Balaev D.A.1,2, Krasikov A.A.1,2, Stolyar S.V.1,2, Iskhakov R.S.1, Ladygina V.P.3, Yaroslavtsev R.N.2, Bayukov O.A.1, Vorotynov A.M.1, Volochaev M.N.1, Dubrovskiy A.A.1,4
-
Affiliations:
- Kirensky Institute of Physics
- Siberian Federal University
- International Scientific Centre for Organism Extreme States Research
- International Laboratory of High Magnetic Fields and Low Temperatures
- Issue: Vol 58, No 9 (2016)
- Pages: 1782-1791
- Section: Magnetism
- URL: https://ogarev-online.ru/1063-7834/article/view/198603
- DOI: https://doi.org/10.1134/S1063783416090092
- ID: 198603
Cite item
Abstract
The results of the investigation into the effect of low-temperature annealing of a powder of nanoparticles of bacterial ferrihydrite on its magnetic properties have been presented. It has been found that an increase in the time (up to 240 h) and temperature (in the range from 150 to 200°C) of annealing leads to a monotonic increase in the superparamagnetic blocking temperature, the coercive force, and the threshold field of the opening of the magnetic hysteresis loop (at liquid-helium temperatures), as well as to an increase in the magnetic resonance line width at low temperatures and in the magnetic susceptibility at room temperature. At the same time, according to the results of the analysis of the Mössbauer spectra, the annealing of ferrihydrite does not lead to the formation of new iron oxide phases. Most of these features are well consistent with the fact that the low-temperature annealing of ferrihydrite causes an increase in the size of nanoparticles, which is confirmed by the results of transmission electron microscopy studies.
About the authors
D. A. Balaev
Kirensky Institute of Physics; Siberian Federal University
Author for correspondence.
Email: dabalaev@iph.krasn.ru
Russian Federation, Akademgorodok 50/38, Krasnoyarsk, 660036; Svobodny pr. 79, Krasnoyarsk, 660041
A. A. Krasikov
Kirensky Institute of Physics; Siberian Federal University
Email: dabalaev@iph.krasn.ru
Russian Federation, Akademgorodok 50/38, Krasnoyarsk, 660036; Svobodny pr. 79, Krasnoyarsk, 660041
S. V. Stolyar
Kirensky Institute of Physics; Siberian Federal University
Email: dabalaev@iph.krasn.ru
Russian Federation, Akademgorodok 50/38, Krasnoyarsk, 660036; Svobodny pr. 79, Krasnoyarsk, 660041
R. S. Iskhakov
Kirensky Institute of Physics
Email: dabalaev@iph.krasn.ru
Russian Federation, Akademgorodok 50/38, Krasnoyarsk, 660036
V. P. Ladygina
International Scientific Centre for Organism Extreme States Research
Email: dabalaev@iph.krasn.ru
Russian Federation, Akademgorodok 50, Krasnoyarsk, 660036
R. N. Yaroslavtsev
Siberian Federal University
Email: dabalaev@iph.krasn.ru
Russian Federation, Svobodny pr. 79, Krasnoyarsk, 660041
O. A. Bayukov
Kirensky Institute of Physics
Email: dabalaev@iph.krasn.ru
Russian Federation, Akademgorodok 50/38, Krasnoyarsk, 660036
A. M. Vorotynov
Kirensky Institute of Physics
Email: dabalaev@iph.krasn.ru
Russian Federation, Akademgorodok 50/38, Krasnoyarsk, 660036
M. N. Volochaev
Kirensky Institute of Physics
Email: dabalaev@iph.krasn.ru
Russian Federation, Akademgorodok 50/38, Krasnoyarsk, 660036
A. A. Dubrovskiy
Kirensky Institute of Physics; International Laboratory of High Magnetic Fields and Low Temperatures
Email: dabalaev@iph.krasn.ru
Russian Federation, Akademgorodok 50/38, Krasnoyarsk, 660036; ul. Gajowicka 95, Wroclaw, 53-421
Supplementary files
