Magnetospectroscopy of double HgTe/CdHgTe quantum wells
- 作者: Bovkun L.S.1, Krishtopenko S.S.1,2, Ikonnikov A.V.1,3, Aleshkin V.Y.1,3, Kadykov A.M.1,2, Ruffenach S.2, Consejo C.2, Teppe F.2, Knap W.2, Orlita M.4, Piot B.4, Potemski M.4, Mikhailov N.N.5,6, Dvoretskii S.A.5, Gavrilenko V.I.1,3
-
隶属关系:
- Institute for Physics of Microstructures
- Laboratoire Charles Coulomb (L2C), UMR CNRS 5221 and UM
- Lobachevsky Nizhny Novgorod State University
- Laboratoire National des Champs Magnetiques Intenses (LNCMI-G), CNRS-UJF-UPS-INSA
- Rzhanov Institute of Semiconductor Physics
- Novosibirsk State University
- 期: 卷 50, 编号 11 (2016)
- 页面: 1532-1538
- 栏目: XX International Symposium “Nanophysics and Nanoelectronics”, Nizhny Novgorod, March 14–18, 2016
- URL: https://ogarev-online.ru/1063-7826/article/view/198606
- DOI: https://doi.org/10.1134/S1063782616110063
- ID: 198606
如何引用文章
详细
The magnetoabsorption spectra in double HgTe/CdHgTe quantum wells (QWs) with normal and inverted band structures are investigated. The Landau levels in symmetric QWs with a rectangular potential profile are calculated based on the Kane 8 × 8 model. The presence of a tunnel-transparent barrier is shown to lead to the splitting of states and “doubling” of the main magnetoabsorption lines. At a QW width close to the critical one the presence of band inversion and the emergence of a gapless band structure, similar to bilayer graphene, are shown for a structure with a single QW. The shift of magnetoabsorption lines as the carrier concentration changes due to the persistent photoconductivity effect associated with a change in the potential profile because of trap charge exchange is detected. This opens up the possibility for controlling topological phase transitions in such structures.
作者简介
L. Bovkun
Institute for Physics of Microstructures
Email: antikon@ipmras.ru
俄罗斯联邦, Nizhny Novgorod, 603950
S. Krishtopenko
Institute for Physics of Microstructures; Laboratoire Charles Coulomb (L2C), UMR CNRS 5221 and UM
Email: antikon@ipmras.ru
俄罗斯联邦, Nizhny Novgorod, 603950; Montpellier, 34095
A. Ikonnikov
Institute for Physics of Microstructures; Lobachevsky Nizhny Novgorod State University
编辑信件的主要联系方式.
Email: antikon@ipmras.ru
俄罗斯联邦, Nizhny Novgorod, 603950; Nizhny Novgorod, 603950
V. Aleshkin
Institute for Physics of Microstructures; Lobachevsky Nizhny Novgorod State University
Email: antikon@ipmras.ru
俄罗斯联邦, Nizhny Novgorod, 603950; Nizhny Novgorod, 603950
A. Kadykov
Institute for Physics of Microstructures; Laboratoire Charles Coulomb (L2C), UMR CNRS 5221 and UM
Email: antikon@ipmras.ru
俄罗斯联邦, Nizhny Novgorod, 603950; Montpellier, 34095
S. Ruffenach
Laboratoire Charles Coulomb (L2C), UMR CNRS 5221 and UM
Email: antikon@ipmras.ru
法国, Montpellier, 34095
C. Consejo
Laboratoire Charles Coulomb (L2C), UMR CNRS 5221 and UM
Email: antikon@ipmras.ru
法国, Montpellier, 34095
F. Teppe
Laboratoire Charles Coulomb (L2C), UMR CNRS 5221 and UM
Email: antikon@ipmras.ru
法国, Montpellier, 34095
W. Knap
Laboratoire Charles Coulomb (L2C), UMR CNRS 5221 and UM
Email: antikon@ipmras.ru
法国, Montpellier, 34095
M. Orlita
Laboratoire National des Champs Magnetiques Intenses (LNCMI-G), CNRS-UJF-UPS-INSA
Email: antikon@ipmras.ru
法国, Grenoble, FR-38042
B. Piot
Laboratoire National des Champs Magnetiques Intenses (LNCMI-G), CNRS-UJF-UPS-INSA
Email: antikon@ipmras.ru
法国, Grenoble, FR-38042
M. Potemski
Laboratoire National des Champs Magnetiques Intenses (LNCMI-G), CNRS-UJF-UPS-INSA
Email: antikon@ipmras.ru
法国, Grenoble, FR-38042
N. Mikhailov
Rzhanov Institute of Semiconductor Physics; Novosibirsk State University
Email: antikon@ipmras.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090
S. Dvoretskii
Rzhanov Institute of Semiconductor Physics
Email: antikon@ipmras.ru
俄罗斯联邦, Novosibirsk, 630090
V. Gavrilenko
Institute for Physics of Microstructures; Lobachevsky Nizhny Novgorod State University
Email: antikon@ipmras.ru
俄罗斯联邦, Nizhny Novgorod, 603950; Nizhny Novgorod, 603950
补充文件
