On one classical problem in the radial orbit instability theory


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Antonov’s classical problem of stability of a collisionless sphere with a purely radial motion of stars is considered as a limit of the problem in which stars move in nearly radial orbits. We provide the proper limiting equations that take into account the singularity in the density distribution at the sphere center and give their solutions. We show that there is instability for even and odd spherical harmonics, with all unstable modes being not slow. The growth rates of aperiodic even modes increase indefinitely when approaching purely radial models. The physics of the radial orbit instability is discussed.

Авторлар туралы

E. Polyachenko

Institute of Astronomy

Хат алмасуға жауапты Автор.
Email: epolyach@inasan.ru
Ресей, ul. Pyatnitskaya 48, Moscow, 119017

I. Shukhman

Institute of Solar–Terrestrial Physics

Email: epolyach@inasan.ru
Ресей, Irkutsk, 664033

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Inc., 2016