On one classical problem in the radial orbit instability theory
- Авторы: Polyachenko E.V.1, Shukhman I.G.2
-
Учреждения:
- Institute of Astronomy
- Institute of Solar–Terrestrial Physics
- Выпуск: Том 42, № 2 (2016)
- Страницы: 100-114
- Раздел: Article
- URL: https://ogarev-online.ru/1063-7737/article/view/189535
- DOI: https://doi.org/10.1134/S1063773716020043
- ID: 189535
Цитировать
Аннотация
Antonov’s classical problem of stability of a collisionless sphere with a purely radial motion of stars is considered as a limit of the problem in which stars move in nearly radial orbits. We provide the proper limiting equations that take into account the singularity in the density distribution at the sphere center and give their solutions. We show that there is instability for even and odd spherical harmonics, with all unstable modes being not slow. The growth rates of aperiodic even modes increase indefinitely when approaching purely radial models. The physics of the radial orbit instability is discussed.
Ключевые слова
Об авторах
E. Polyachenko
Institute of Astronomy
Автор, ответственный за переписку.
Email: epolyach@inasan.ru
Россия, ul. Pyatnitskaya 48, Moscow, 119017
I. Shukhman
Institute of Solar–Terrestrial Physics
Email: epolyach@inasan.ru
Россия, Irkutsk, 664033
Дополнительные файлы
