Microvascular Endothelium in Patients with Pancreatic Head Cancer and Relationship with Surgical Outcomes
- Authors: Olzhaev S.T.1, Shoykhet Y.N.2, Titov K.S.3, Lazarev A.F.2, Adjibayev B.J.1
-
Affiliations:
- Almaty regional multidisciplinary clinic
- Altai State Medical University
- Peoples' Friendship University of Russia
- Issue: Vol 29, No 4 (2024)
- Pages: 282-294
- Section: Original Study Articles
- URL: https://ogarev-online.ru/1028-9984/article/view/313532
- DOI: https://doi.org/10.17816/onco642394
- ID: 313532
Cite item
Abstract
BACKGROUND: The proportion of pancreatic cancer remains high in the overall cancer incidence. Pancreatic ductal adenocarcinoma is a highly aggressive and lethal tumor.
AIM: To evaluate the microvascular endothelial function in patients undergoing pancreatic head cancer surgery and to establish a correlation with surgical outcomes.
MATERIALS AND METHODS: A prospective observational randomized study was conducted from 2009 to 2022. The study included two cohorts: healthy subjects (control group, n=٤٠) and patients diagnosed with pancreatic head cancer (patient group, n=95) who underwent a Whipple procedure. The assessment of the functional parameters of the microvascular endothelium included measurements of circulating endothelial cell count, von Willebrand factor (vWF), and endothelium-dependent vasodilation.
The patient group was divided into two subgroups: the main subgroup included patients who underwent a laparoscopic Whipple procedure (n=44) and the comparison subgroup consisted of those who underwent laparotomy (n=51).
In the main subgroup, patients were administered a combination of arginine glutamate (1.0 g daily) and enalapril (2.5–5.0 mg daily) for the treatment of endothelial dysfunction.
RESULTS: In the main group, sums of circulating endothelial cell and vWF were significantly lower (7.0±1.4 and 93.6±23.3, respectively), whereas endothelium-dependent vasodilation was higher (9.8±3.2) as compared to the control group (p <0.0001).
In the population of the main subgroup who received endothelial dysfunction treatment, a 4.2- and 4.6-fold reduction in circulating endothelial cell and vWF levels, respectively, was observed (p <0.0001 for both). Additionally, a 4.0-fold increase in endothelium-dependent vasodilation was documented (p <0.0001). The circulating endothelial cell count of more than 7.0×104 cells/L, vWF of more than 120%, and less than 10% increase in endothelium-dependent vasodilation during the study period increase the risk of early postoperative complications by 2.7, 1.9, and 1.7 times, respectively (p <0.0001). The incidence of surgical and non-surgical complications was 28.4 and 24.2%, respectively. The in-hospital mortality rate was 5.3%. In the main subgroup, the incidence of septic and non-surgical complications was 2.5 and 3.1 times lower, respectively, than in the comparison subgroup (p <0.05).
CONCLUSIONS: The combination of endothelial dysfunction treatment and laparoscopic surgical technique has been shown to have a protective effect on the microvascular endothelium in patients with pancreatic head cancer, reducing the risk of early postoperative complications. The baseline vascular endothelial function has been demonstrated to correlate with the risk of early postoperative complications and long-term adverse events, including relapses and/or metastases.
Full Text
##article.viewOnOriginalSite##About the authors
Sayakhat T. Olzhaev
Almaty regional multidisciplinary clinic
Author for correspondence.
Email: solzhayev@mail.ru
ORCID iD: 0000-0002-3312-323X
SPIN-code: 7559-0618
MD, Cand. Sci. (Medicine), Assistant Professor
Kazakhstan, AlmatyYakov N. Shoykhet
Altai State Medical University
Email: starok100@mail.ru
ORCID iD: 0000-0002-5253-4325
SPIN-code: 6379-3517
MD, Dr. Sci. (Medicine), Professor, Corr. Member of RAS
Russian Federation, BarnaulKonstantin S. Titov
Peoples' Friendship University of Russia
Email: ks-titov@mail.ru
ORCID iD: 0000-0003-4460-9136
SPIN-code: 7795-6512
MD, Dr. Sci. (Medicine), Professor
Russian Federation, MoscowAleksander F. Lazarev
Altai State Medical University
Email: lazarev@akzs.ru
ORCID iD: 0000-0003-1080-5294
SPIN-code: 1161-8387
MD, Dr. Sci. (Medicine), Professor
Russian Federation, BarnaulBaurzhan J. Adjibayev
Almaty regional multidisciplinary clinic
Email: 87011495856@mail.ru
ORCID iD: 0000-0003-0756-0273
SPIN-code: 6545-2976
MD Cand. Sci. (Medicine)
Kazakhstan, AlmatyReferences
- Duan H, Li L, He S. Advances and Prospects in the Treatment of Pancreatic Cancer. Int J Nanomedicine. 2023;18:3973–3988. doi: 10.2147/IJN.S413496
- Verloy R, Privat-Maldonado A, Smits E, Bogaerts A. Cold Atmospheric Plasma Treatment for Pancreatic Cancer-The Importance of Pancreatic Stellate Cells. Cancers (Basel). 2020;12(10):2782. doi: 10.3390/cancers12102782
- Bailey P, Zhou X, An J, et al. Refining the Treatment of Pancreatic Cancer From Big Data to Improved Individual Survival. Function. 2023;4(3):zqad011. doi: 10.1093/function/zqad011
- Wang CC, Zhao YM, Wang HY, Zhao YP. New Insight into the Role of Exosomes in Pancreatic Cancer. Ann Clin Lab Sci. 2019;49(3):385–392.
- Zhou X, Yan Y, Shen Y, et al. Exosomes: Emerging Insights into the Progression of Pancreatic Cancer. Int J Biol Sci. 2024;20(10):4098–4113. doi: 10.7150/ijbs.97076
- El-Tanani M, Nsairat H, Matalka II, et al. Impact of exosome therapy on pancreatic cancer and its progression. Med Oncol. 2023;40(8):225. doi: 10.1007/s12032-023-02101-x
- Piwocka O, Piotrowski I, Suchorska WM, Kulcenty K. Dynamic interactions in the tumor niche: how the cross-talk between CAFs and the tumor microenvironment impacts resistance to therapy. Front Mol Biosci. 2024;11:1343523. doi: 10.3389/fmolb.2024.1343523
- Benvenuto M, Focaccetti C. Tumor Microenvironment: Cellular Interaction and Metabolic Adaptations. Int J Mol Sci. 2024;25(7):3642. doi: 10.3390/ijms25073642
- Patel AK, Singh S. Cancer associated fibroblasts: phenotypic and functional heterogeneity. Front Biosci (Landmark Ed). 2020;25(5):961–978. doi: 10.2741/4843
- Naleskina LA, Kunska LM, Chekhun VF. Modern views on the role of main components of stroma and tumor microinvironment in invasion, migration and metastasis. Exp Oncol. 2020;42(4):252–262. doi: 10.32471/exp-oncology.2312-8852.vol-42-no-4.15401
- Feldman L. Hypoxia within the glioblastoma tumor microenvironment: a master saboteur of novel treatments. Front Immunol. 2024;15:1384249. doi: 10.3389/fimmu.2024.1384249
- Zhao Y, Adjei AA. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor. Oncologist. 2015;20(6):660–673. doi: 10.1634/theoncologist.2014-0465
- Eelen G, de Zeeuw P, Treps L, et al. Endothelial Cell Metabolism. Physiol Rev. 2018;98(1):3–58. doi: 10.1152/physrev.00001.2017
- Naghavi M, Kleis S, Tanaka H, et al. High Frequency of Microvascular Dysfunction in US Outpatient Clinics: A Sign of High Residual Risk? Data from 7,105 Patients. Int J Vasc Med. 2022;2022:4224975. doi: 10.1155/2022/4224975
- Lee JF, Barrett-O’Keefe Z, Garten RS, et al. Evidence of microvascular dysfunction in heart failure with preserved ejection fraction. Heart. 2016;102(4):278–284. doi: 10.1136/heartjnl-2015-308403
- Patmore S, Dhami SPS, O’Sullivan JM. Von Willebrand factor and cancer; metastasis and coagulopathies. J Thromb Haemost. 2020;18(10):2444–2456. doi: 10.1111/jth.14976
- O’Sullivan JM, Preston RJS, Robson T, O’Donnell JS. Emerging Roles for von Willebrand Factor in Cancer Cell Biology. Semin Thromb Hemost. 2018;44(2):159–166. doi: 10.1055/s-0037-1607352
- Tikhomirova IA. Тихомирова И.А. Blood Rheology and Microcirculation. Uspehi fiziologicheskih nauk. 2023;54(1):3–25. doi: 10.31857/S0301179823010071 EDN: GYCAYR
- Feng Y, Luo S, Fan D, et al. The role of vascular endothelial cells in tumor metastasis. Acta Histochem. 2023;125(6):152070. doi: 10.1016/j.acthis.2023.152070
- Celermajer DS, Sorensen KE, Gooch VM, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992;340(8828):1111–1115. doi: 10.1016/0140-6736(92)93147-f
- Zateyshchikova AA, Zateyshchikov DA. Endothelial regulation of vascular tone: research methods and clinical significance. Kardiologia. 1998;9:68–80. (In Russ.)
- Accini JL, Sotomayor A, Trujillo F, et al. Colombian study to assess the use of noninvasive determination of endothelium-mediated vasodilatation (CANDEV). Normal values and factors associated. Endothelium. 2001;8(2):157–166. doi: 10.3109/10623320109165324
- Hladovec J, Prerovský I, Stanĕk V, Fabián J. Circulating endothelial cells in acute myocardial infarction and angina pectoris. Klin Wochenschr. 1978;56(20):1033–1036. doi: 10.1007/BF01476669
- Petrishchev NN, Berkovich OA, Vlasov TD, et al. The diagnostic value of determining desquamated endothelial cells in the blood. Clinical laboratory diagnostics. 2001;1:50–52. (In Russ.) EDN: RNRPAR
- Kozlovskiy VI, Solodkov AP, Myadelets OD, Akulenok AV. Methods for determining the number of endotheliocytes circulating in the blood. Methodological recommendations. Vitebsk; 2008. С. 29. (In Russ.) EDN: LTCZUO
- Born GV. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature. 1962;194:927–929. doi: 10.1038/194927b0
- Momot AP, Tsyvkina LP, Taranenko IA, et al. Modern methods of recognizing the state of thrombotic readiness: monograph. Barnaul: Altai University; 2011. 138 с. (In Russ.) EDN: GLULSH
- Vlasov TD, Petrischev NN, Lazovskaya OA. Endothelial dysfunction. Do we understand this term properly? Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2020;17(2):76–84. EDN: EQEPOI doi: 10.21292/2078-5658-2020-17-2-76-84
- Pachmayr E, Treese C, Stein U. Underlying Mechanisms for Distant Metastasis - Molecular Biology. Visc Med. 2017;33(1):11–20. doi: 10.1159/000454696
- Malhab LJB, Saber-Ayad MM, Al-Hakm R, et al. Chronic Inflammation and Cancer: The Role of Endothelial Dysfunction and Vascular Inflammation. Curr Pharm Des. 2021;27(18):2156–2169. doi: 10.2174/1381612827666210303143442
- Stepanova TV, Ivanov AN, Tereshkina NE, et al. Markers of endothelial dysfunction: pathogenetic role and diagnostic significance. Klin Lab Diagn. 2019;64(1):34–41. (In Russ.) doi: 10.18821/0869-2084-2018-63-34-41
- Agostini S, Lionetti V. New insights into the non-hemostatic role of von Willebrand factor in endothelial protection. Can J Physiol Pharmacol. 2017;95(10):1183–1189. doi: 10.1139/cjpp-2017-0126
- Patmore S, Dhami SPS, O’Sullivan JM. Von Willebrand factor and cancer; metastasis and coagulopathies. J Thromb Haemost. 2020;18(10):2444–2456. doi: 10.1111/jth.14976
- Storch AS, de Mattos D, Alves R. Methods of Endothelial Function Assessment: Description and Applications. Review Articles. Int J Cardiovasc Sci. 2017;30(3):262–273. doi: 10.5935/2359-4802.20170034
- Hida K, Maishi N, Annan DA. Contribution of Tumor Endothelial Cells in Cancer Progression. Int J Mol Sci. 201824;19(5):1272. doi: 10.3390/ijms19051272
- Hida K, Maishi N, Torii C, Hida Y. Tumor angiogenesis-characteristics of tumor endothelial cells. Int J Clin Oncol. 2016;21(2):206–212. doi: 10.1007/s10147-016-0957-1
- Soboleva GN, Fedulov VK, Samko AN, et al. Prognostic value of endothelial dysfunction in coronary and brachial arteries, and common risk factors in development of cardiovascular complications in patients with microvascular angina. Russian Journal of Cardiology. 2017;22(3):54–58. EDN: YHOEYV doi: 10.15829/1560-4071-2017-3-54-58
- Abrard S, Fouquet O, Riou J, et al. Preoperative endothelial dysfunction in cutaneous microcirculation is associated with postoperative organ injury after cardiac surgery using extracorporeal circulation: a prospective cohort study. Ann Intensive Care. 2021;11(1):4. doi: 10.1186/s13613-020-00789-y
- Fisher VV, Yatsuk IV, Baturin VA, Volkov EV. The effect of surgical stress on endothelial dysfunction and magnesium-calcium balance in case of inclusion of magnesium sulfate solution in premedication. Bulletin of Contemporary Clinical Medicine. 2017;10(2):47–53. doi: 10.20969/VSKM.2017.10(2).47-53 EDN: YKOSCL
- Knežević D, Ćurko-Cofek B, Batinac T, et al. Endothelial Dysfunction in Patients Undergoing Cardiac Surgery: A Narrative Review and Clinical Implications. J Cardiovasc Dev Dis. 2023;10(5):213. doi: 10.3390/jcdd10050213
- Ekeloef S, Godthaab C, Schou-Pedersen AMV, et al. Peri-operative endothelial dysfunction in patients undergoing minor abdominal surgery: An observational study. Eur J Anaesthesiol. 2019;36(2):130–134. doi: 10.1097/EJA.0000000000000935
- Cyr AR, Huckaby LV, Shiva SS, Zuckerbraun BS. Nitric Oxide and Endothelial Dysfunction. Crit Care Clin. 2020;36(2):307–321. doi: 10.1016/j.ccc.2019.12.009
- Poredos P, Jezovnik MK. Endothelial Dysfunction and Venous Thrombosis. Angiology. 2018;69(7):564–567. doi: 10.1177/0003319717732238
- Wang X, He B. Endothelial dysfunction: molecular mechanisms and clinical implications. MedComm (2020). 2024;5(8):e651. doi: 10.1002/mco2.651
- Wu G, Meininger CJ, McNeal CJ. Role of L-Arginine in Nitric Oxide Synthesis and Health in Humans. Adv Exp Med Biol. 2021;1332:167–187. doi: 10.1007/978-3-030-74180-8_10
- Ekeloef S, Larsen MH, Schou-Pedersen AM, et al. Endothelial dysfunction in the early postoperative period after major colon cancer surgery. Br J Anaesth. 2017;118(2):200–206. doi: 10.1093/bja/aew410
Supplementary files
