Microbiome and Human Cancer: Descriptive Literature Review
- Authors: Arutyunyan D.N.1, Petrova V.D.1, Terekhova S.A.1, Lazarev A.F.1
-
Affiliations:
- Altai State Medical University
- Issue: Vol 29, No 4 (2024)
- Pages: 344-357
- Section: Reviews
- URL: https://ogarev-online.ru/1028-9984/article/view/313537
- DOI: https://doi.org/10.17816/onco642393
- ID: 313537
Cite item
Abstract
The term “microbiome” is defined as the community of all microorganisms and their metabolic byproducts within their environment. It also refers to the complete set of genetic material and the relationships between these microorganisms within a specific ecological setting throughout a certain period of time.
The human microbiome profile develops from birth and remains relatively stable throughout adult life. The microbiota’s primary functions include involvement in the most essential processes of the body’s vital activity, such as the development of adaptive mechanisms, immune defense, physiological homeostasis, cognitive function, and regulation of energy resources within the body. Consequently, the microbiota plays a pivotal role in preserving equilibrium within the macroorganism itself and between the macroorganism and its environment.
This article presents the findings of numerous scientific investigations that examine the impact of microbiota on the vital activity of tumors. These studies demonstrate that the microbiota can either accelerate or decelerate tumor growth, and in certain instances, the bacterial community does not contribute to the development of tumors.
Tumors, characterized by the profound cellular changes resulting from the impairment of essential DNA mechanisms, create a specific environment that fosters bacterial colonization. In general, tumor tissue is known to have a higher bacterial load compared to normal tissue. Bacteria have been observed to produce certain metabolites that are subsequently used by tumor cells. Consequently, these bacteria and tumor cells compete directly for nutrients essential to their vital functions. The study examines the conditions underlying a particular scenario in which tumors and microbiota may interact.
The review presents findings from studies that have sought to regulate intratumor microbes as a potential new target for anti-cancer therapy. This includes the use of bacterial platforms and fecal microbiota transplantation.
Additionally, this study presents investigational findings concerning the use of microbiota in the treatment of acute respiratory viral infection, with a focus on chemotherapeutic and immunotherapeutic protocols. These findings corroborate the efficacy of microbiota-based interventions and concurrently highlight the potential for adverse complications.
Full Text
##article.viewOnOriginalSite##About the authors
Diana N. Arutyunyan
Altai State Medical University
Email: doc.arutyunyan@gmail.com
ORCID iD: 0009-0006-8877-1329
SPIN-code: 3683-3972
Russian Federation, Barnaul
Valentina D. Petrova
Altai State Medical University
Email: valent_04@mail.ru
ORCID iD: 0000-0001-7169-9646
SPIN-code: 2941-6649
MD, Cand. Sci. (Medicine), Assistant Professor
Russian Federation, BarnaulSvetlana A. Terekhova
Altai State Medical University
Author for correspondence.
Email: quip@list.ru
ORCID iD: 0009-0001-4594-4529
SPIN-code: 7564-1647
Cand. Sci. (Medicine), Assistant Lecturer
Russian Federation, BarnaulAlexander F. Lazarev
Altai State Medical University
Email: lazarev@akzs.ru
ORCID iD: 0000-0003-1080-5294
SPIN-code: 1161-8387
Dr. Sci. (Medicine), Professor
Russian Federation, BarnaulReferences
- Berg G, Rybakova D, Fischer D, et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome. 2020;8(1):103. doi: 10.1186/s40168-020-00875-0
- Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi: 10.1038/nature08821
- McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J. 2006;26:154–158.
- Blache C, Manuel E, Kaltcheva T, et al. Systemic delivery of Salmonella typhimurium transformed with IDO shRNA enhances intratumoral vector colonization and suppresses tumor growth. Cancer Res. 2012;72(24):6447–6456. doi: 10.1158/0008-5472.CAN-12-0193
- Charles A, Thomas R. The Influence of the microbiome on the innate immune microenvironment of solid tumors. Neoplasia. 2023;37:100878. doi: 10.1016/j.neo.2023.100878
- Marshall E, Telkar N, Lam W. Functional role of the cancer microbiome in the solid tumour niche. Curr Res Immunol. 2021;2(19):1–6. doi: 10.1016/j.crimmu.2021.01.001
- Riquelme E, Zhang Y, Zhang L, et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell. 2019;178(4):795–806.e12. doi: 10.1016/j.cell.2019.07.008
- Liu Z, Hong L, Ling Z. Potential role of intratumor bacteria outside the gastrointestinal tract: More than passengers. Cancer Med. 2023;12(16):16756–16773. doi: 10.1002/ cam4.6298
- Routy B, Gopalakrishnan V, Daillère R, et al. The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol. 2018;15(6):382–396. doi: 10.1038/s41571-018-0006-2
- Elkrief A, El Raichani L, Richard C, et al. Antibiotics are associated with decreased progression-free survival of advanced melanoma patients treated with immune checkpoint inhibitors. Oncoimmunology. 2019;8(4):e1568812. doi: 10.1080/2162402X.2019.1568812
- Wilson BE, Routy B, Nagrial A, Chin VT. The effect of antibiotics on clinical outcomes in immune-checkpoint blockade: A systematic review and meta-analysis of observational studies. Cancer Immunol Immunother. 2020;69(3):343–354. doi: 10.1007/s00262-019-02453-2
- Morrell S, Kohonen-Corish MRJ, Ward RL, et al. Antibiotic exposure within six months before systemic therapy was associated with lower cancer survival. J Clin Epidemiol. 2022;147(12):122–131. doi: 10.1016/j.jclinepi.2022.04.003
- Le Noci V, Guglielmetti S, Arioli S, et al. Modulation of pulmonary microbiota by antibiotic or probiotic aerosol therapy: a strategy to promote immunosurveillance against lung metastases. Cell Reports. 2018;24(13):3528–3538. doi: 10.1016/j.celrep.2018.08.090
- Fulop DJ, Zylberberg H, Wu YL, et al. Association of antibiotic receipt with survival among patients with metastatic pancreatic ductal adenocarcinoma receiving chemotherapy. JAMA Network Open. 2023;6(3):e234254. doi: 10.1001/jamanetworkopen.2023.4254
- Jin C, Lagoudas GK, Zhao C, et al. Commensal microbiota promote lung cancer development via γδ T cells. Cell. 2019;176(5):998–1013.e16. doi: 10.1016/j.cell.2018.12.040
- Fu A, Yao B, Dong T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell. 2022;185(8):1356–1372.e26. doi: 10.1016/j.cell.2022.02.027
- Bruce JP, Yip K, Bratman SV, et al. Nasopharyngeal cancer: Molecular landscape. J Clin Oncol. 2015;33(29):3346–3355. doi: 10.1200/JCO.2015.60.7846
- Taberna M, Mena M, Pavón MA, et al. Human papillomavirus-related oropharyngeal cancer. Ann Oncol. 2017;28(10):2386–2398. doi: 10.1093/annonc/mdx304
- Peek RM, Blaser MJ. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer. 2002;2(1):28–37. doi: 10.1038/nrc703
- Salar A. Gastric MALT lymphoma and Helicobacter pylori. Med Clín (Barc). 2019;152(2):65–71. doi: 10.1016/j.medcle.2018.09.009
- Chakladar J, Wong LM, Kuo SZ, et al. The Liver microbiome is implicated in cancer prognosis and modulated by alcohol and hepatitis B. Cancers. 2020;12(6):1642. doi: 10.3390/cancers12061642
- Kochkina SO, Gordeev SS, Mammadli ZZ. Role of human microbiota in the development of colorectal cancer. Tazovaya hirurgiya i onkologiya. 2019;9(3):11–17. doi: 10.17650/2686-9594-2019-9-3-11-17
- Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature. 2020;580(7802):269–273. doi: 10.1038/s41586-020-2080-8
- Cougnoux A, Dalmasso G, Martinez R, et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut. 2014;63(12):1932–1942. doi: 10.1136/gutjnl-2013-305257
- Guo C, Kong L, Xiao L, et al. The impact of the gut microbiome on tumor immunotherapy: from mechanism to application strategies. Cell Biosci. 2023;13(1):188. doi: 10.1186/s13578-023-01135-y
- Rubinstein MR, Baik JE, M Lagana S, et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1. EMBO Rep. 2019;20(4):e47638. doi: 10.15252/embr.201847638
- Parhi L, Alon-Maimon T, Sol A, et al. Breast cancer colonization by fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat Commun. 2020;11(1):3259. doi: 10.1038/s41467-020-16967-2
- Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science. 2020;368(6494):973–980. doi: 10.1126/science.aay9189
- Xavier JB, Young VB, Skufca J, et al. The cancer microbiome: distinguishing direct and indirect effects requires a systemic view. Trends Cancer. 2020;6(3):192–204. doi: 10.1016/j.trecan.2020.01.004
- Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22(2):292–298. doi: 10.1101/gr.126573.111
- Song M, Chan AT, Sun J. Influence of the gut microbiome, diet, and environment on risk of colorectal cancer. Gastroenterology. 2020;158(2):322–340. doi: 10.1053/j.gastro.2019.06.048
- Dasari S, Kathera C, Janardhan A, et al. Surfacing role of probiotics in cancer prophylaxis and therapy: A systematic review. Clin Nutr. 2017;36(6):1465–1472. doi: 10.1016/j.clnu.2016.11.017
- He Y, Fu L, Li Y, et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity. Cell Metab. 2021;33(5):988–1000. doi: 10.1016/j.cmet.2021.03.002
- Danne C, Sokol H. Butyrate, a new microbiota-dependent player in CD8+ T cells immunity and cancer therapy? Cell Rep Med. 2021;2(7):100328. doi: 10.1016/j.xcrm.2021.100328
- Scott AJ, Alexander JL, Merrifield CA, et al. International Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis. Gut. 2019;68(9):1624–1632. doi: 10.1136/gutjnl-2019-318556
- Qu D, Wang Y, Xia Q, et al. Intratumoral Microbiome of Human Primary Liver Cancer. Hepatol Commun. 2022;6(7):1741–1752. doi: 10.1002/hep4.1908
- Duong MT-Q, Qin Y, You S-H, Min J-J. Bacteria-cancer interactions: bacteria-based cancer therapy. Ex Mol Med. 2019;51(12):1–15. doi: 10.1038/s12276-019-0297-0
- Sieow BF-L, Wun KS, Yong WP, et al. Tweak to treat: reprograming bacteria for cancer treatment. Trends Cancer. 2021;7(5):447–464. doi: 10.1016/j.trecan.2020.11.004
- Bao Y, Cheng Y, Liu W, et al. Bacteria−based synergistic therapy in the backdrop of synthetic biology. Front Oncol. 2022;12(4):845346. doi: 10.3389/fonc.2022.845346
- Janku F, Zhang HH, Pezeshki A, et al. Intratumoral injection of Clostridium novyi-NT spores in patients with treatment-refractory advanced solid tumors. Clin Cancer Res. 2021;27(1):96–106. doi: 10.1158/1078-0432.CCR-20-2065
- Guo Y, Chen Y, Liu X, et al. Targeted cancer immunotherapy with genetically engineered oncolytic Salmonella typhimurium. Cancer Lett. 2019;469:102–110. doi: 10.1016/j.canlet.2019.10.033
- Chen J, Li T, Liang J, et al. Current status of intratumour microbiome in cancer and engineered exogenous microbiota as a promising therapeutic strategy. Biomed Pharmacother. 2022;145(3):112443. doi: 10.1016/j.biopha.2021.112443
- Chowdhury S, Castro S, Coker C, et al. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat Med. 2019;25(7):1057–1063. doi: 10.1038/s41591-019-0498-z
- Kubiak AM, Bailey TS, Dubois LJ, et al. Efficient secretion of murine IL-2 from an attenuated strain of Clostridium sporogenes, a novel delivery vehicle for cancer immunotherapy. Front Microbiol. 2021;12:669488. doi: 10.3389/fmicb.2021.669488
- Phan T, Nguyen VH, D’Alincourt MS, et al. Salmonella-mediated therapy targeting indoleamine 2,3-dioxygenase 1 (IDO) activates innate immunity and mitigates colorectal cancer growth. Cancer Gene Ther. 2020;27(3–4):235–245. doi: 10.1038/s41417-019-0089-7
- Yang Z, Zou L, Yue B, Hu M. Salmonella typhimurium may support cancer treatment: a review. Acta Biochim Biophys Sin (Shanghai). 2023;55(3):331–342. doi: 10.3724/abbs.2023007
- Gniadek TJ, Augustin L, Schottel J, et al. A phase I, dose escalation, single dose trial of oral attenuated Salmonella typhimurium containing human IL-2 in patients with metastatic gastrointestinal cancers. J Immunother. 2020;43(7):217–221. doi: 10.1097/CJI.0000000000000325
- Cammarota G, Ianiro G, Tilg H, et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017;66(4):569–580. doi: 10.1136/gutjnl-2016-313017
- Baruch EN, Youngster I, Ben-Betzalel G, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2020;371(6529):602–609. doi: 10.1126/science.abb5920
- Araujo DV, Watson GA, Oliva M, et al. Bugs as drugs: The role of microbiome in cancer focusing on immunotherapeutics. Cancer Treat Rev. 2020;92:102125. doi: 10.1016/j.ctrv.2020.102125
- Helmink BA, Khan MAW, Hermann A, et al. The microbiome, cancer, and cancer therapy. Nat Med. 2019;25(3):377–388. doi: 10.1038/s41591-019-0377-7
- Chen D, Wu J, Jin D, et al. Fecal microbiota transplantation in cancer management: Current status and perspectives. Int J Cancer. 2019;145(8):2021–2031. doi: 10.1002/ijc.32003
- Shui L, Yang X, Li J, et al. Gut Microbiome as a potential factor for modulating resistance to cancer immunotherapy. Front Immunol. 2020;10:2989. doi: 10.3389/fimmu.2019.02989
Supplementary files
