Microbiome and Human Cancer: Descriptive Literature Review

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The term “microbiome” is defined as the community of all microorganisms and their metabolic byproducts within their environment. It also refers to the complete set of genetic material and the relationships between these microorganisms within a specific ecological setting throughout a certain period of time.

The human microbiome profile develops from birth and remains relatively stable throughout adult life. The microbiota’s primary functions include involvement in the most essential processes of the body’s vital activity, such as the development of adaptive mechanisms, immune defense, physiological homeostasis, cognitive function, and regulation of energy resources within the body. Consequently, the microbiota plays a pivotal role in preserving equilibrium within the macroorganism itself and between the macroorganism and its environment.

This article presents the findings of numerous scientific investigations that examine the impact of microbiota on the vital activity of tumors. These studies demonstrate that the microbiota can either accelerate or decelerate tumor growth, and in certain instances, the bacterial community does not contribute to the development of tumors.

Tumors, characterized by the profound cellular changes resulting from the impairment of essential DNA mechanisms, create a specific environment that fosters bacterial colonization. In general, tumor tissue is known to have a higher bacterial load compared to normal tissue. Bacteria have been observed to produce certain metabolites that are subsequently used by tumor cells. Consequently, these bacteria and tumor cells compete directly for nutrients essential to their vital functions. The study examines the conditions underlying a particular scenario in which tumors and microbiota may interact.

The review presents findings from studies that have sought to regulate intratumor microbes as a potential new target for anti-cancer therapy. This includes the use of bacterial platforms and fecal microbiota transplantation.

Additionally, this study presents investigational findings concerning the use of microbiota in the treatment of acute respiratory viral infection, with a focus on chemotherapeutic and immunotherapeutic protocols. These findings corroborate the efficacy of microbiota-based interventions and concurrently highlight the potential for adverse complications.

作者简介

Diana Arutyunyan

Altai State Medical University

Email: doc.arutyunyan@gmail.com
ORCID iD: 0009-0006-8877-1329
SPIN 代码: 3683-3972
俄罗斯联邦, Barnaul

Valentina Petrova

Altai State Medical University

Email: valent_04@mail.ru
ORCID iD: 0000-0001-7169-9646
SPIN 代码: 2941-6649

MD, Cand. Sci. (Medicine), Assistant Professor

俄罗斯联邦, Barnaul

Svetlana Terekhova

Altai State Medical University

编辑信件的主要联系方式.
Email: quip@list.ru
ORCID iD: 0009-0001-4594-4529
SPIN 代码: 7564-1647

Cand. Sci. (Medicine), Assistant Lecturer

俄罗斯联邦, Barnaul

Alexander Lazarev

Altai State Medical University

Email: lazarev@akzs.ru
ORCID iD: 0000-0003-1080-5294
SPIN 代码: 1161-8387

Dr. Sci. (Medicine), Professor

俄罗斯联邦, Barnaul

参考

  1. Berg G, Rybakova D, Fischer D, et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome. 2020;8(1):103. doi: 10.1186/s40168-020-00875-0
  2. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi: 10.1038/nature08821
  3. McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J. 2006;26:154–158.
  4. Blache C, Manuel E, Kaltcheva T, et al. Systemic delivery of Salmonella typhimurium transformed with IDO shRNA enhances intratumoral vector colonization and suppresses tumor growth. Cancer Res. 2012;72(24):6447–6456. doi: 10.1158/0008-5472.CAN-12-0193
  5. Charles A, Thomas R. The Influence of the microbiome on the innate immune microenvironment of solid tumors. Neoplasia. 2023;37:100878. doi: 10.1016/j.neo.2023.100878
  6. Marshall E, Telkar N, Lam W. Functional role of the cancer microbiome in the solid tumour niche. Curr Res Immunol. 2021;2(19):1–6. doi: 10.1016/j.crimmu.2021.01.001
  7. Riquelme E, Zhang Y, Zhang L, et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell. 2019;178(4):795–806.e12. doi: 10.1016/j.cell.2019.07.008
  8. Liu Z, Hong L, Ling Z. Potential role of intratumor bacteria outside the gastrointestinal tract: More than passengers. Cancer Med. 2023;12(16):16756–16773. doi: 10.1002/ cam4.6298
  9. Routy B, Gopalakrishnan V, Daillère R, et al. The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol. 2018;15(6):382–396. doi: 10.1038/s41571-018-0006-2
  10. Elkrief A, El Raichani L, Richard C, et al. Antibiotics are associated with decreased progression-free survival of advanced melanoma patients treated with immune checkpoint inhibitors. Oncoimmunology. 2019;8(4):e1568812. doi: 10.1080/2162402X.2019.1568812
  11. Wilson BE, Routy B, Nagrial A, Chin VT. The effect of antibiotics on clinical outcomes in immune-checkpoint blockade: A systematic review and meta-analysis of observational studies. Cancer Immunol Immunother. 2020;69(3):343–354. doi: 10.1007/s00262-019-02453-2
  12. Morrell S, Kohonen-Corish MRJ, Ward RL, et al. Antibiotic exposure within six months before systemic therapy was associated with lower cancer survival. J Clin Epidemiol. 2022;147(12):122–131. doi: 10.1016/j.jclinepi.2022.04.003
  13. Le Noci V, Guglielmetti S, Arioli S, et al. Modulation of pulmonary microbiota by antibiotic or probiotic aerosol therapy: a strategy to promote immunosurveillance against lung metastases. Cell Reports. 2018;24(13):3528–3538. doi: 10.1016/j.celrep.2018.08.090
  14. Fulop DJ, Zylberberg H, Wu YL, et al. Association of antibiotic receipt with survival among patients with metastatic pancreatic ductal adenocarcinoma receiving chemotherapy. JAMA Network Open. 2023;6(3):e234254. doi: 10.1001/jamanetworkopen.2023.4254
  15. Jin C, Lagoudas GK, Zhao C, et al. Commensal microbiota promote lung cancer development via γδ T cells. Cell. 2019;176(5):998–1013.e16. doi: 10.1016/j.cell.2018.12.040
  16. Fu A, Yao B, Dong T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell. 2022;185(8):1356–1372.e26. doi: 10.1016/j.cell.2022.02.027
  17. Bruce JP, Yip K, Bratman SV, et al. Nasopharyngeal cancer: Molecular landscape. J Clin Oncol. 2015;33(29):3346–3355. doi: 10.1200/JCO.2015.60.7846
  18. Taberna M, Mena M, Pavón MA, et al. Human papillomavirus-related oropharyngeal cancer. Ann Oncol. 2017;28(10):2386–2398. doi: 10.1093/annonc/mdx304
  19. Peek RM, Blaser MJ. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer. 2002;2(1):28–37. doi: 10.1038/nrc703
  20. Salar A. Gastric MALT lymphoma and Helicobacter pylori. Med Clín (Barc). 2019;152(2):65–71. doi: 10.1016/j.medcle.2018.09.009
  21. Chakladar J, Wong LM, Kuo SZ, et al. The Liver microbiome is implicated in cancer prognosis and modulated by alcohol and hepatitis B. Cancers. 2020;12(6):1642. doi: 10.3390/cancers12061642
  22. Kochkina SO, Gordeev SS, Mammadli ZZ. Role of human microbiota in the development of colorectal cancer. Tazovaya hirurgiya i onkologiya. 2019;9(3):11–17. doi: 10.17650/2686-9594-2019-9-3-11-17
  23. Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature. 2020;580(7802):269–273. doi: 10.1038/s41586-020-2080-8
  24. Cougnoux A, Dalmasso G, Martinez R, et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut. 2014;63(12):1932–1942. doi: 10.1136/gutjnl-2013-305257
  25. Guo C, Kong L, Xiao L, et al. The impact of the gut microbiome on tumor immunotherapy: from mechanism to application strategies. Cell Biosci. 2023;13(1):188. doi: 10.1186/s13578-023-01135-y
  26. Rubinstein MR, Baik JE, M Lagana S, et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1. EMBO Rep. 2019;20(4):e47638. doi: 10.15252/embr.201847638
  27. Parhi L, Alon-Maimon T, Sol A, et al. Breast cancer colonization by fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat Commun. 2020;11(1):3259. doi: 10.1038/s41467-020-16967-2
  28. Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science. 2020;368(6494):973–980. doi: 10.1126/science.aay9189
  29. Xavier JB, Young VB, Skufca J, et al. The cancer microbiome: distinguishing direct and indirect effects requires a systemic view. Trends Cancer. 2020;6(3):192–204. doi: 10.1016/j.trecan.2020.01.004
  30. Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22(2):292–298. doi: 10.1101/gr.126573.111
  31. Song M, Chan AT, Sun J. Influence of the gut microbiome, diet, and environment on risk of colorectal cancer. Gastroenterology. 2020;158(2):322–340. doi: 10.1053/j.gastro.2019.06.048
  32. Dasari S, Kathera C, Janardhan A, et al. Surfacing role of probiotics in cancer prophylaxis and therapy: A systematic review. Clin Nutr. 2017;36(6):1465–1472. doi: 10.1016/j.clnu.2016.11.017
  33. He Y, Fu L, Li Y, et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity. Cell Metab. 2021;33(5):988–1000. doi: 10.1016/j.cmet.2021.03.002
  34. Danne C, Sokol H. Butyrate, a new microbiota-dependent player in CD8+ T cells immunity and cancer therapy? Cell Rep Med. 2021;2(7):100328. doi: 10.1016/j.xcrm.2021.100328
  35. Scott AJ, Alexander JL, Merrifield CA, et al. International Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis. Gut. 2019;68(9):1624–1632. doi: 10.1136/gutjnl-2019-318556
  36. Qu D, Wang Y, Xia Q, et al. Intratumoral Microbiome of Human Primary Liver Cancer. Hepatol Commun. 2022;6(7):1741–1752. doi: 10.1002/hep4.1908
  37. Duong MT-Q, Qin Y, You S-H, Min J-J. Bacteria-cancer interactions: bacteria-based cancer therapy. Ex Mol Med. 2019;51(12):1–15. doi: 10.1038/s12276-019-0297-0
  38. Sieow BF-L, Wun KS, Yong WP, et al. Tweak to treat: reprograming bacteria for cancer treatment. Trends Cancer. 2021;7(5):447–464. doi: 10.1016/j.trecan.2020.11.004
  39. Bao Y, Cheng Y, Liu W, et al. Bacteria−based synergistic therapy in the backdrop of synthetic biology. Front Oncol. 2022;12(4):845346. doi: 10.3389/fonc.2022.845346
  40. Janku F, Zhang HH, Pezeshki A, et al. Intratumoral injection of Clostridium novyi-NT spores in patients with treatment-refractory advanced solid tumors. Clin Cancer Res. 2021;27(1):96–106. doi: 10.1158/1078-0432.CCR-20-2065
  41. Guo Y, Chen Y, Liu X, et al. Targeted cancer immunotherapy with genetically engineered oncolytic Salmonella typhimurium. Cancer Lett. 2019;469:102–110. doi: 10.1016/j.canlet.2019.10.033
  42. Chen J, Li T, Liang J, et al. Current status of intratumour microbiome in cancer and engineered exogenous microbiota as a promising therapeutic strategy. Biomed Pharmacother. 2022;145(3):112443. doi: 10.1016/j.biopha.2021.112443
  43. Chowdhury S, Castro S, Coker C, et al. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat Med. 2019;25(7):1057–1063. doi: 10.1038/s41591-019-0498-z
  44. Kubiak AM, Bailey TS, Dubois LJ, et al. Efficient secretion of murine IL-2 from an attenuated strain of Clostridium sporogenes, a novel delivery vehicle for cancer immunotherapy. Front Microbiol. 2021;12:669488. doi: 10.3389/fmicb.2021.669488
  45. Phan T, Nguyen VH, D’Alincourt MS, et al. Salmonella-mediated therapy targeting indoleamine 2,3-dioxygenase 1 (IDO) activates innate immunity and mitigates colorectal cancer growth. Cancer Gene Ther. 2020;27(3–4):235–245. doi: 10.1038/s41417-019-0089-7
  46. Yang Z, Zou L, Yue B, Hu M. Salmonella typhimurium may support cancer treatment: a review. Acta Biochim Biophys Sin (Shanghai). 2023;55(3):331–342. doi: 10.3724/abbs.2023007
  47. Gniadek TJ, Augustin L, Schottel J, et al. A phase I, dose escalation, single dose trial of oral attenuated Salmonella typhimurium containing human IL-2 in patients with metastatic gastrointestinal cancers. J Immunother. 2020;43(7):217–221. doi: 10.1097/CJI.0000000000000325
  48. Cammarota G, Ianiro G, Tilg H, et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017;66(4):569–580. doi: 10.1136/gutjnl-2016-313017
  49. Baruch EN, Youngster I, Ben-Betzalel G, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2020;371(6529):602–609. doi: 10.1126/science.abb5920
  50. Araujo DV, Watson GA, Oliva M, et al. Bugs as drugs: The role of microbiome in cancer focusing on immunotherapeutics. Cancer Treat Rev. 2020;92:102125. doi: 10.1016/j.ctrv.2020.102125
  51. Helmink BA, Khan MAW, Hermann A, et al. The microbiome, cancer, and cancer therapy. Nat Med. 2019;25(3):377–388. doi: 10.1038/s41591-019-0377-7
  52. Chen D, Wu J, Jin D, et al. Fecal microbiota transplantation in cancer management: Current status and perspectives. Int J Cancer. 2019;145(8):2021–2031. doi: 10.1002/ijc.32003
  53. Shui L, Yang X, Li J, et al. Gut Microbiome as a potential factor for modulating resistance to cancer immunotherapy. Front Immunol. 2020;10:2989. doi: 10.3389/fimmu.2019.02989

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The resident microbiome of a malignant tumor is specific and differs from the benign microbiome.

下载 (423KB)
3. Fig. 2. Four possible origins of bacteria in tumors outside the gastrointestinal tract: 1 — migration or invasion from the gastrointestinal tract; 2 — transfer from the circulatory system; 3 — selective colonization from normal adjacent tissues; 4 — carried through a metastatic process by circulating tumor cells.

下载 (430KB)
4. Fig. 3. Three stages of tumor metastasis are facilitated by intracellular bacteria: 1 — invasion and migration; 2 — maintenance of circulating tumor cell survival; 3 — targeted colonization of tumor cells. Both in the primary tumor and in the metastases, intratumor bacteria are crucial to the metastatic process.

下载 (388KB)
5. Fig. 4. Effects of microbiome on cancer. The human microbiome can affect cancer progression through roles directly at the tumour site, as well as in the gut. A) In the gut, bacterial relative abundance measures have been associated with cancer survival. Furthermore, the presence of specific bacteria in the gut has the ability to metabolize the chemotherapeutic agent gemcitabine, decreasing its effectiveness. For immunotherapy, the presence of a microbiome is necessary to mediate the effectiveness of immune checkpoint blockade drugs. B) At the cancer site, bacteria are present both in the tumour milieu, and also inside tumour cells.

下载 (350KB)

版权所有 © Eco-Vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».