Comparison of cytochemistry and flow cytometry for leukemia immunophenotyping: a systematic review and meta-analysis

Cover Page

Cite item

Full Text

Abstract

Accurate diagnosis and classification of leukemia are essential for effective treatment planning. Traditional cytochemistry relies on enzyme-based staining for morphological evaluation, while flow cytometry (FCM) employs monoclonal antibodies to detect multiple surface and intracellular markers. This systematic review and meta-analysis compared the diagnostic accuracy of cytochemistry and FCM in leukemia immunophenotyping. A systematic search of PubMed and Google Scholar was conducted according to PRISMA guidelines. Studies evaluating sensitivity, specificity, and accuracy of cytochemistry and FCM in diagnosing acute and chronic leukemia were included. Data extraction covered study characteristics, diagnostic markers, and performance outcomes. Meta-analysis was performed to compare diagnostic values across methods. Eleven eligible studies comprising pediatric and adult leukemia cases were analyzed. Cytochemical stains such as myeloperoxidase (MPO) and sudan black B showed high specificity (91-100%) and moderate-to-high sensitivity (60-97%), while periodic acid–Schiff (PAS) and nonspecific esterase had lower reliability. FCM demonstrated superior diagnostic performance with average sensitivity of 87.7% and specificity of 85.6%, achieving > 95% accuracy in several studies. Marker panels including CD3, CD45, CD79a, and MPO enabled precise subtype differentiation and minimal residual disease detection. Cytochemistry remains useful as an affordable screening tool in resource-limited settings, but FCM provides greater sensitivity, specificity, and comprehensive immunophenotypic data, making it the preferred method for leukemia diagnosis and monitoring. Combining both approaches can enhance diagnostic performance across diverse clinical contexts.

About the authors

Ajay Kumar

Teerthanker Mahaveer University

Author for correspondence.
Email: drajaykumar30july@gmail.com

MD, Associate Professor, Department of General Medicine, Teerthanker Mahaveer Medical College and Research Centre

India, Moradabad, Uttar Pradesh

Prithpal Singh Matreja

Teerthanker Mahaveer University

Email: singhmatrejaprithpal@gmail.com

MD, Professor, Department of Pharmacy, Teerthanker Mahaveer Medical College and Research Centre

India, Moradabad, Uttar Pradesh

Vinod Kumar Singh

Teerthanker Mahaveer University

Email: drvinodkumarsingh85@gmail.com

MD, Associate Professor, Department of General Medicine, Teerthanker Mahaveer Medical College & Research Centre

India, Moradabad, Uttar Pradesh

Seema Awasthi

Teerthanker Mahaveer University

Email: seemaawasthi285@gmail.com

MD, Associate Professor, Department of Pathology, Teerthanker Mahaveer Medical College & Research Centre

India, Moradabad, Uttar Pradesh

References

  1. Ahuja A., Tyagi S., Seth T., Pati H.P., Gahlot G., Tripathi P., Somasundaram V., Saxena R. Comparison of Immunohistochemistry, Cytochemistry, and Flow Cytometry in AML for Myeloperoxidase Detection. Indian J. Hematol. Blood Transfus., 2018, Vol. 34, no. 2, pp. 233-239.
  2. Bain B.J., Béné M.C. Morphological and immunophenotypic clues to the WHO categories of acute myeloid leukaemia. Acta Haematol., 2019, Vol. 141, no. 4, pp. 232-244.
  3. Brown M., Wittwer C. Flow cytometry: principles and clinical applications in hematology. Clin. Chem., 2000, Vol. 46, no. 8, pp. 1221-1229.
  4. Charak B.S., Advani S.H., Karandikar S.M., Parikh P.M., Nair C.N., Das Gupta A., Gopal R., Tapan K.S., Nadkarni K.S., Kurkure P.A., Pai S.K., Pai V.R. Sudan black B positivity in acute lymphoblastic leukemia. Acta Haematol., 1988, Vol. 80, no. 4, pp. 199-202.
  5. Cline M.J., Epstein F.H. The Molecular Basis of Leukemia. N. Engl. J. Med., 1994, Vol. 330, no. 5, pp. 328-336.
  6. Cohn P., Emanuel P., Bozdech M. Differences in nonspecific esterase from normal and leukemic monocytes. Blood, 1987, Vol. 69, no. 6, pp. 1574-1579.
  7. Deghady A.A.M., Mansour A.R., Elfahham A.A.A.E. The value of cytochemical stains in the diagnosis of acute leukemia. Int. J. Res. Health Sci .Nurs., 2016, Vol. 2, no. 5, pp. 1-7.
  8. Denys B., Van Der Sluijs-Gelling A.J., Homburg C., Van Der Schoot C.E., De Haas V., Philippé J., Pieters R., van Dongen J.J.M., Van Der Velden V.H.J. Improved flow cytometric detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia, 2013, Vol. 27, no. 3, pp. 635-641.
  9. Diamond L.W., Nguyen D.T., Andreeff M., Maiese R.L., Braylan R.C.A Knowledge-based system for the interpretation of flow cytometry data in leukemias and lymphomas. Cytometry, 1994, Vol. 17, no. 3, pp. 266-273.
  10. Gerstner A.O.H., Mittag A., Laffers W., Dähnert I., Lenz D., Bootz F., Bocsi J., Tárnok A. Comparison of immunophenotyping by slide-based cytometry and by flow cytometry. J. Immunol. Methods, 2006, Vol. 311, no. 1-2, pp. 130-138.
  11. Gralnick H.R., Galton D.A.G., Catovsky D., Sultan C., Bennett J.M. Classification of acute leukemia. Ann. Intern. Med., 1977, Vol. 87, no. 6, pp. 740-753.
  12. Guillaume N., Penther D., Vaida I., Gruson B., Harrivel V., Claisse J.F., Capiod J.C., Lefrere J.J., Damaj G. CD66c expression in B-cell acute lymphoblastic leukemia: strength and weakness. Int. J. Lab. Hematol., 2011, Vol. 33, no. 1, pp. 92-96.
  13. Guruprasad K.P., Vasudev V., Agrawal H., Thakur M., Krishan A., Sobti R.C. Flow cytometry: historical perspectives, fundamentals, past and present instrumentations, and applications. In: Sobti R.C., Krishan A., Agrawal D.K. (eds.). Flow Cytometry. Springer Nature Singapore, 2024, pp. 1-25.
  14. Hamid G.A., Harize I.B. Bone marrow morphology and cytochemical staining in diagnosis and classification of acute leukemia. Eur. J. Biomed. Pharm. Sci., 2018, Vol. 5, no. 8, pp. 574-583.
  15. Kampen K.R. The Discovery and Early Understanding of Leukemia. Leuk. Res., 2012, Vol. 36, no. 1, pp. 6-13.
  16. Karawajew L., Dworzak M., Ratei R., Rhein P., Gaipa G., Buldini B., Basso G., Hrusak O., Ludwig W. D., Henze G., Seeger K., von Stackelberg A., Mejstrikova E., Eckert C. Minimal residual disease analysis by eight-color flow cytometry in relapsed childhood acute lymphoblastic leukemia. Haematologica, 2015, Vol. 100, no. 7, pp. 935-944.
  17. Koeffler H., Ranyard J., Pertcheck M. Myeloperoxidase: Its structure and expression during myeloid differentiation. Blood, 1985, Vol. 65, no. 2, pp. 484-491.
  18. Lacombe F., Belloc F. Flow cytometry study of cell cycle, apoptosis and drug resistance in acute leukemia. Hematol. Cell Ther., 1996, Vol. 38, no. 6, pp. 495-504.
  19. Lam G., Punnett A., Stephens D., Sung L., Abdelhaleem M., Hitzler J. Value of flow cytometric analysis of peripheral blood samples in children diagnosed with acute lymphoblastic leukemia. Pediatr. Blood Cancer, 2018, Vol. 65, no. 1, e26738. doi: 10.1002/pbc.26738.
  20. Lin K., Austin G. Functional activity of three distinct myeloperoxidase (MPO) promoters in human myeloid cells. Leukemia, 2002, Vol. 16, no. 6, pp. 1143-1153.
  21. Liu M., Weng X., Gong S., Chen H., Ding J., Guo M., Hu X., Wang J., Yang J., Tang G. Flow cytometric analysis of CD64 expression pattern and density in the diagnosis of acute promyelocytic leukemia: a multi-center study in Shanghai, China. Oncotarget, 2017, Vol. 8, no. 46, pp. 80625-80637.
  22. Modvig S., Hallböök H., Madsen H.O., Siitonen S., Rosthøj S., Tierens A., Juvonen V., Osnes L.T.N., Vålerhaugen H., Hultdin M., Matuzeviciene R., Stoskus M., Marincevic M., Lilleorg A., Ehinger M., Norén-Nystrøm U., Toft N., Taskinen M., Jónsson O.G., Pruunsild K., Vaitkeviciene G., Vettenranta K., Lund B., Abrahamsson J., Porwit A., Schmiegelow K., Marquart H.V. Value of flow cytometry for MRD-based relapse prediction in B cell precursor all in a multicenter setting. Leukemia, 2021, Vol. 35, no. 7, pp. 1894-1906.
  23. Paredes-Aguilera R., Romero-Guzman L., Lopez-Santiago N., Burbano-Ceron L., Camacho-Del Monte O., Nieto-Martinez S. Flow cytometric analysis of cell-surface and intracellular antigens in the diagnosis of acute leukemia. Am. J. Hematol., 2001, Vol. 68, no. 2, pp. 69-74.
  24. Peters J.M., Ansari M.Q. Multiparameter flow cytometry in the diagnosis and management of acute leukemia. Arch. Pathol. Lab. Med., 2011, Vol. 135, no. 1, pp. 44-54.
  25. Rahman K. Flow cytometry based residual disease monitoring in haematolymphoid neoplasm. In: Sobti R.C., Krishan A., Agrawal D.K. (eds.). Flow Cytometry. Springer Nature Singapore, 2024, pp 319-346.
  26. Raskovalova T., Berger M.G., Jacob M.-C., Park S., Campos L., Aanei C.M., Kasprzak J., Pereira B., Labarère J., Cesbron J.-Y., Veyrat-Masson R. Flow cytometric analysis of neutrophil myeloperoxidase expression in peripheral blood for ruling out myelodysplastic syndromes: a diagnostic accuracy study. Haematologica, 2019, Vol. 104, no. 12, pp. 2382-2390.
  27. Resende G.A.D., Gileno M. da C., Moraes-Souza H., Carlos A.M., Leal A.S., Martins P.R.J. The role of cytochemistry in the diagnosis of acute leukemias. Int. J. Health Sci. Res., 2017, Vol. 7, no. 8, pp, 290-295.
  28. Rollins-Raval M.A., Roth C.G. The value of immunohistochemistry for CD14, CD123, CD33, Myeloperoxidase and CD68R in the diagnosis of acute and chronic myelomonocytic leukaemias. Histopathology, 2012, Vol. 60, no. 6, pp. 933-942.
  29. Schumacher H.R., Alvares C.J., Blough R.I., Mazzella F. Acute leukemia. Clin. Lab. Med., 2002, Vol. 22, no. 1, pp. 153-192.
  30. Subramaniam H.N., Chaubal K.A. Evaluation of intracellular lipids by standardized staining with a sudan black B fraction. J. Biochem. Biophys. Methods, 1990, Vol. 21, no. 1, pp. 9-16.
  31. Tebbi C.K. Etiology of Acute Leukemia: A Review. Cancers, 2021, Vol. 13, no. 9, 2256. doi: 10.3390/cancers13092256.
  32. Theunissen P., Mejstrikova E., Sedek L., van der Sluijs-Gelling A.J., Gaipa G., Bartels M., da Costa E.S., Kotrová M., Novakova M., Sonneveld E., Buracchi C., Bonaccorso P., Oliveira E., Te Marvelde J.G., Szczepanski T., Lhermitte L., Hrusak O., Lecrevisse Q., Grigore G.E., Froňková E., Trka J., Brüggemann M., Orfao A., van Dongen J.J.M., van der Velden V.H.J.; EuroFlow Consortium. Standardized flow cytometry for highly sensitive MRD measurements in B cell acute lymphoblastic leukemia. Blood, 2017, Vol. 129, no. 3, pp. 347-357.
  33. Tworek J.A., Singleton T.P., Schnitzer B., Hsi E.D., Ross C.W. Flow cytometric and immunohistochemical analysis of small lymphocytic lymphoma, mantle cell lymphoma, and plasmacytoid small lymphocytic lymphoma. Am. J. Clin. Pathol., 1998, Vol. 110, no. 5, pp. 582-589.
  34. van Der Pan K., de Bruin-Versteeg S., Damasceno D., Hernández-Delgado A., van der Sluijs-Gelling A.J., van den Bossche W.B.L., de Laat I.F., Díez P., Naber B.A.E., Diks A.M., Berkowska M.A., de Mooij B., Groenland R.J., de Bie F.J., Khatri I., Kassem S., de Jager A.L., Louis A., Almeida J., van Gaans-van den Brink J.A.M., Barkoff A. M., He Q., Ferwerda G., Versteegen P., Berbers G.A.M., Orfao A., van Dongen J.J.M., Teodosio C. Development of a standardized and validated flow cytometry approach for monitoring of innate myeloid immune cells in human blood. Front. Immunol., 2022, Vol. 13, 935879. doi: 10.3389/fimmu.2022.935879.
  35. Van Dongen J.J.M., Orfao A. EuroFlow: resetting leukemia and lymphoma immunophenotyping. Leukemia, 2012, Vol. 26, no. 9, pp. 1899-1907.
  36. Varma N., Naseem S. Application of flow cytometry in pediatric hematology-oncology. Pediatr. Blood Cancer, 2011, Vol. 57, no. 1, pp. 18-29.
  37. Venkatesan S., Boj S., Nagaraj S.A. A study of clinico-hematological profile in acute leukemia with cytochemical correlation. Int. J. Acad. Med. Pharm., 2023, Vol. 5, no. 4, pp. 893-898.
  38. Verigou E., Chatzilygeroudi T., Lazaris V., De Lastic A.-L., Symeonidis A. Immunophenotyping myelodysplastic neoplasms: the role of flow cytometry in the molecular classification era. Front. Oncol., 2024, Vol. 14, 1447001. doi: 10.3389/fonc.2024.1447001.
  39. Vredenburgh J.J., Silva O., Tyer C., DeSOMBRE K., Abou-Ghalia A., Cook M., Layfield L., Peters W.P., Bast R.C. A comparison of immunohistochemistry, two-color immunofluorescence, and flow cytometry with cell sorting for the detection of micrometastatic breast cancer in the bone marrow. J. Hematother., 1996, Vol. 5, no. 1, pp. 57-62.
  40. Wyatt J.I., Quirke P., Ward D.C., Clayden A.D., Dixon M.F., Johnston D., Bird C.C. Comparison of Histopathological and Flow Cytometric Parameters in Prediction of Prognosis in Gastric Cancer. J. Pathol., 1989, Vol. 158, no. 3, pp. 195-201.
  41. Zhang X., Wang L.-P., Ziober A., Zhang P.J., Bagg A. Ionized Calcium Binding Adaptor Molecule 1 (IBA1). Am. J. Clin. Pathol., 2021, Vol. 156, no. 1, pp. 86-99.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Kumar A., Matreja P., Singh V., Awasthi S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).