Fibrodysplasia ossificans progressiva (clinical observation with a brief review of the literature)

Cover Page

Cite item

Abstract

BACKGROUND: Fibrodysplasia ossificans progressiva is a rare genetically determined disease of the musculoskeletal system and characterized by heterotopic ossifications in the muscles, fascia, and tendons and congenital and skeletal deformities that form during life. Owing to the lack of awareness of doctors, unresolved challenges in monitoring the disease and predicting the course and development of its complications, and the lack of generally accepted effective treatment, fibrodysplasia ossificans progressiva leads to severe disability and social disadaptation, limiting the life expectancy of patients.

CLINICAL CASE DESCRIPTION: The characteristic anamnestic data of a patient with fibrodysplasia ossificans progressiva are presented. The course of the disease from the moment of detection at age 1 year and 3 months to 29 years was determined. Notably, the care and symptomatic treatment performed during this period could not prevent the regular appearance of new heterotopic ossifications, which led to severe functional disorders and loss of the patient’s ability to self-care. In a brief review, the current possibilities of pathogenetic therapy for this disease and prevention of progression and complications were considered. The risks of unjustified surgical interventions leading to increased severity of the course and functional disorders are emphasized.

CONCLUSION: The scientific studies conducted in recent years to examine the etiopathogenesis of fibrodysplasia ossificans progressiva enabled the development of effective pharmacotherapy, which provides hope for the possibility of preventing the progression of the disease and improving the quality of life and social adaptation of patients with fibrodysplasia ossificans progressiva.

About the authors

Aleksandr F. Kolondaev

N.N. Priorov Central Institute of Traumatology and Orthopedic

Email: osteopathology6@mail.ru
ORCID iD: 0000-0002-4216-8800
SPIN-code: 5388-2606

MD, Cand. Sci. (Med.)

Russian Federation, 10 Priorova str., Moscow, 115172

Svetlana S. Rodionova

N.N. Priorov Central Institute of Traumatology and Orthopedic

Author for correspondence.
Email: rod06@inbox.ru
ORCID iD: 0000-0002-2726-8758
SPIN-code: 3529-8052

MD, Dr. Sci. (Med.), professor

Russian Federation, 10 Priorova str., Moscow, 115172

References

  1. De Brasi D, Orlando F, Gaeta V, et al. Fibrodysplasia Ossificans Progressiva: A Challenging Diagnosis. Genes (Basel). 2021;12(8):1187. doi: 10.3390/genes12081187
  2. Pignolo RJ, Hsiao EC, Baujat G, et al. Prevalence of fibrodysplasia ossificans progressiva (FOP) in the United States: estimate from three treatment centers and a patient organization. Orphanet J Rare Dis. 2021;16(1):350–7. doi: 10.1186/s13023-021-01983-2
  3. Zatsepin ST. Bone pathology in adults. Moscow: Meditsina; 2001. Р. 128–131. (In Russ).
  4. Kovalenko-Klychkova NA, Klychkova IYu, Kenis VM, Melchenko EV. Fibrodysplasia ossificans progressiva in children (review and clinical analysis of 5 case reports). Travmatologiya i ortopediya Rossii. 2014;1(71):102–109. EDN: SANLYX
  5. Pignolo RJ, Bedford-Gay C, Liljesthröm M, et al. The Natural History of Flare-Ups in Fibrodysplasia Ossificans Progressiva (FOP): A Comprehensive Global Assessment. J Bone Miner Res. 2016;31(3):650–6. doi: 10.1002/jbmr.2728
  6. Kaplan FS, Mukaddam MA, Baujat G, et al. The medical management of fibrodysplasia ossificans progressiva: current treatment considerations. Proc Intl Clin Council FOP. 2021;2:1–128. Available from: https://www.iccfop.org/dvlp/wp-content/uploads/2022/01/GUIDELINES-v4-updated-Jan-2022.pdf
  7. Al Kaissi A, Kenis V, Ben Ghachem M, et al. The Diversity of the Clinical Phenotypes in Patients With Fibrodysplasia Ossificans Progressiva. J Clin Med Res. 2016;8(3):246–53. doi: 10.14740/jocmr2465w
  8. Pignolo RJ, Cheung K, Kile S, et al. Self-reported baseline phenotypes from the International Fibrodysplasia Ossificans Progressiva (FOP) Association Global Registry. Bone. 2020;134:115274. doi: 10.1016/j.bone.2020.115274
  9. Kaplan FS, Al Mukaddam M, Stanley A, Towler OW, Shore EM. Fibrodysplasia ossificans progressiva (FOP): A disorder of osteochondrogenesis. Bone. 2020;140:115539. doi: 10.1016/j.bone.2020.115539
  10. Bauer AH, Bonham J, Gutierrez L, Hsiao EC, Motamedi D. Fibrodysplasia ossificans progressiva: a current review of imaging findings. Skeletal Radiol. 2018;47(8):1043–1050. doi: 10.1007/s00256-018-2889-5
  11. Towler OW, Shore EM, Kaplan FS. Skeletal malformations and developmental arthropathy in individuals who have fibrodysplasia ossificans progressiva. Bone. 2020;130:115116. doi: 10.1016/j.bone.2019.115116
  12. Pignolo RJ, Shore EM, Kaplan FS. Fibrodysplasia ossificans progressiva: clinical and genetic aspects. Orphanet J Rare Dis. 2011;6:80. doi: 10.1186/1750-1172-6-80
  13. Smilde BJ, Botman E, de Ruiter RD, et al. Monitoring and Management of Fibrodysplasia Ossificans Progressiva: Current Perspectives. Orthop Res Rev. 2022;14:113–120. doi: 10.2147/ORR.S337491
  14. Botman E, Smilde BJ, Hoebink M, et al. Deterioration of pulmonary function: An early complication in Fibrodysplasia Ossificans Progressiva. Bone Rep. 2021;14:100758. doi: 10.1016/j.bonr.2021.100758
  15. Kaplan FS, Zasloff MA, Kitterman JA, et al. Early mortality and cardiorespiratory failure in patients with fibrodysplasia ossificans progressiva. J Bone Joint Surg Am. 2010;92(3):686–91. doi: 10.2106/JBJS.I.00705
  16. Hasegawa K, Tanaka H, Futagawa N, Miyahara H, Tsukahara H. Rapid Progression of Heterotopic Ossification in Severe Variant of Fibrodysplasia Ossificans Progressiva with p.Arg258Gly in ACVR1: A Case Report and Review of Clinical Phenotypes. Case Rep Genet. 2022;2022:5021758. doi: 10.1155/2022/5021758
  17. Lin H, Shi F, Gao J, Hua P. The role of Activin A in fibrodysplasia ossificans progressiva: a prominent mediator. Biosci Rep. 2019;39(8):BSR20190377. doi: 10.1042/BSR20190377
  18. Kaplan FS, Pignolo RJ, Shore EM. Granting immunity to FOP and catching heterotopic ossification in the Act. Semin Cell Dev Biol. 2016;49:30–6. doi: 10.1016/j.semcdb.2015.12.013
  19. Huang Y, Wang X, Zhou D, et al. Macrophages in heterotopic ossification: from mechanisms to therapy. NPJ Regen Med. 2021;6(1):70. doi: 10.1038/s41536-021-00178-4
  20. Grgurević L, Novak R, Trkulja V, et al. Elevated plasma RANTES in fibrodysplasia ossificans progressiva — A novel therapeutic target? Med Hypotheses. 2019;131:109313. doi: 10.1016/j.mehy.2019.109313
  21. Barruet E, Morales BM, Cain CJ, et al. NF-κB/MAPK activation underlies ACVR1-mediated inflammation in human heterotopic ossification. JCI Insight. 2018;3(22):e122958. doi: 10.1172/jci.insight.122958
  22. Pignolo RJ, McCarrick-Walmsley R, Wang H, et al. Plasma-Soluble Biomarkers for Fibrodysplasia Ossificans Progressiva (FOP) Reflect Acute and Chronic Inflammatory States. J Bone Miner Res. 2022;37(3):475–483. doi: 10.1002/jbmr.4492
  23. de Ruiter RD, Smilde BJ, Pals G, et al. Fibrodysplasia Ossificans Progressiva: What Have We Achieved and Where Are We Now? Follow-up to the 2015 Lorentz Workshop. Front Endocrinol (Lausanne). 2021;12:732728. doi: 10.3389/fendo.2021.732728
  24. Lindborg CM, Brennan TA, Wang H, Kaplan FS, Pignolo RJ. Cartilage-derived retinoic acid-sensitive protein (CD-RAP): A stage-specific biomarker of heterotopic endochondral ossification (HEO) in fibrodysplasia ossificans progressiva (FOP). Bone. 2018;109:153–157. doi: 10.1016/j.bone.2017.09.016
  25. Stanley A, Heo SJ, Mauck RL, Mourkioti F, Shore EM. Elevated BMP and Mechanical Signaling Through YAP1/RhoA Poises FOP Mesenchymal Progenitors for Osteogenesis. J Bone Miner Res. 2019;34(10):1894–1909. doi: 10.1002/jbmr.3760
  26. Al Mukaddam M, Rajapakse CS, Pignolo RJ, Kaplan FS, Smith SE. Imaging assessment of fibrodysplasia ossificans progressiva: Qualitative, quantitative and questionable. Bone. 2018;109:147–152. doi: 10.1016/j.bone.2017.08.011
  27. Botman E, Teunissen BP, Raijmakers P, et al. Diagnostic Value of Magnetic Resonance Imaging in Fibrodysplasia Ossificans Progressiva. JBMR Plus. 2020;4(6):e10363. doi: 10.1002/jbm4.10363
  28. Warner SE, Kaplan FS, Pignolo RJ, et al. Whole-body Computed Tomography Versus Dual Energy X-ray Absorptiometry for Assessing Heterotopic Ossification in Fibrodysplasia Ossificans Progressiva. Calcif Tissue Int. 2021;109(6):615–625. doi: 10.1007/s00223-021-00877-6
  29. Eekhoff EMW, Botman E, Coen Netelenbos J, et al. [18F]NaF PET/CT scan as an early marker of heterotopic ossification in fibrodysplasia ossificans progressiva. Bone. 2018;109:143–146. doi: 10.1016/j.bone.2017.08.012
  30. Botman E, Raijmakers PGHM, Yaqub M, et al. Evolution of heterotopic bone in fibrodysplasia ossificans progressiva: An [18F]NaF PET/CT study. Bone. 2019;124:1–6. doi: 10.1016/j.bone.2019.03.009
  31. Pignolo RJ, Kaplan FS. Clinical staging of Fibrodysplasia Ossificans Progressiva (FOP). Bone. 2018;109:111–114. doi: 10.1016/j.bone.2017.09.014
  32. Kaplan FS, Al Mukaddam M, Pignolo RJ. A cumulative analogue joint involvement scale (CAJIS) for fibrodysplasia ossificans progressiva (FOP). Bone. 2017;101:123–128. doi: 10.1016/j.bone.2017.04.015
  33. Botman E, Treurniet S, Lubbers WD, et al. When Limb Surgery Has Become the Only Life-Saving Therapy in FOP: A Case Report and Systematic Review of the Literature. Front Endocrinol (Lausanne). 2020;11:570. doi: 10.3389/fendo.2020.00570
  34. Hodge JA, Kawabata TT, Krishnaswami S, et al. The mechanism of action of tofacitinib — an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis. Clin Exp Rheumatol. 2016;34(2):318–28.
  35. Nikishina IP, Arsenyeva SV, Matkava VG, et al. Successful experience of tofacitinib treatment in patients with Fibrodysplasia Ossificans Progressiva. Pediatr Rheumatol Online J. 2023;21(1):92. doi: 10.1186/s12969-023-00856-1
  36. Haviv R, Moshe V, De Benedetti F, et al. Is fibrodysplasia ossificans progressiva an interleukin-1 driven auto-inflammatory syndrome? Pediatr Rheumatol Online J. 2019;17(1):84. doi: 10.1186/s12969-019-0386-6
  37. Kaplan FS, Andolina JR, Adamson PC, et al. Early clinical observations on the use of imatinib mesylate in FOP: A report of seven cases. Bone. 2018;109:276–280. doi: 10.1016/j.bone.2017.07.019
  38. Hino K, Zhao C, Horigome K, et al. An mTOR Signaling Modulator Suppressed Heterotopic Ossification of Fibrodysplasia Ossificans Progressiva. Stem Cell Reports. 2018;11(5):1106–1119. doi: 10.1016/j.stemcr.2018.10.007
  39. Kaplan FS, Zeitlin L, Dunn SP, et al. Acute and chronic rapamycin use in patients with Fibrodysplasia Ossificans Progressiva: A report of two cases. Bone. 2018;109:281–284. doi: 10.1016/j.bone.2017.12.011
  40. Pacifici M. Retinoid roles and action in skeletal development and growth provide the rationale for an ongoing heterotopic ossification prevention trial. Bone. 2018;109:267–275. doi: 10.1016/j.bone.2017.08.010
  41. Huang J, Lin J, Li C, Tang B, Xiao H. Palovarotene Can Attenuate Heterotopic Ossification Induced by Tendon Stem Cells by Downregulating the Synergistic Effects of Smad and NF-κB Signaling Pathway following Stimulation of the Inflammatory Microenvironment. Stem Cells Int. 2022;2022:1560943. doi: 10.1155/2022/1560943
  42. Chakkalakal SA, Uchibe K, Convente MR, et al. Palovarotene Inhibits Heterotopic Ossification and Maintains Limb Mobility and Growth in Mice With the Human ACVR1(R206H) Fibrodysplasia Ossificans Progressiva (FOP) Mutation. J Bone Miner Res. 2016;31(9):1666–75. doi: 10.1002/jbmr.2820
  43. Pignolo RJ, Baujat G, Hsiao EC, et al. Palovarotene for Fibrodysplasia Ossificans Progressiva (FOP): Results of a Randomized, Placebo-Controlled, Double-Blind Phase 2 Trial. J Bone Miner Res. 2022;37(10):1891–1902. doi: 10.1002/jbmr.4655
  44. Sinha S, Uchibe K, Usami Y, Pacifici M, Iwamoto M. Effectiveness and mode of action of a combination therapy for heterotopic ossification with a retinoid agonist and an anti-inflammatory agent. Bone. 2016;90:59–68. doi: 10.1016/j.bone.2016.02.008
  45. Hoy SM. Palovarotene: First Approval. Drugs. 2022;82(6):711–716. doi: 10.1007/s40265-022-01709-z
  46. Kaplan FS, Pignolo RJ, Al Mukaddam MM, Shore EM. Hard targets for a second skeleton: therapeutic horizons for fibrodysplasia ossificans progressiva (FOP). Expert Opin Orphan Drugs. 2017;5(4):291–294. doi: 10.1080/21678707.2017.1304211
  47. Chakkalakal SA, Shore EM. Heterotopic Ossification in Mouse Models of Fibrodysplasia Ossificans Progressiva. Methods Mol Biol. 2019;1891:247–255. doi: 10.1007/978-1-4939-8904-1_18
  48. Yang YS, Kim JM, Xie J, et al. Suppression of heterotopic ossification in fibrodysplasia ossificans progressiva using AAV gene delivery. Nat Commun. 2022;13(1):6175. doi: 10.1038/s41467-022-33956-9
  49. Convente MR, Chakkalakal SA, Yang E, et al. Depletion of Mast Cells and Macrophages Impairs Heterotopic Ossification in an Acvr1R206H Mouse Model of Fibrodysplasia Ossificans Progressiva. J Bone Miner Res. 2018;33(2):269–282. doi: 10.1002/jbmr.3304
  50. Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther. 2021;6(1):53. doi: 10.1038/s41392-021-00487-6
  51. Eekhoff EMW, de Ruiter RD, Smilde BJ, et al. Gene Therapy for Fibrodysplasia Ossificans Progressiva: Feasibility and Obstacles. Hum Gene Ther. 2022;33(15–16):782–788. doi: 10.1089/hum.2022.023
  52. Wentworth KL, Masharani U, Hsiao EC. Therapeutic advances for blocking heterotopic ossification in fibrodysplasia ossificans progressiva. Br J Clin Pharmacol. 2019;85(6):1180–1187. doi: 10.1111/bcp.13823
  53. Rocco MD, Forleo-Neto E, Pignolo R, et al. Garetosmab, an inhibitor of activin A, reduces heterotopic ossification and flare-ups in adults with fibrodysplasia ossificans progressiva: a randomized, double-blind, placebo controlled phase 2 trial. Available from: https://www.medrxiv.org/content/10.1101/2023.01.11.23284254v2. doi: 10.1101/2023.01.11.23284254
  54. Williams E, Bagarova J, Kerr G, et al. Saracatinib is an efficacious clinical candidate for fibrodysplasia ossificans progressiva. JCI Insight. 2021;6(8):e95042. doi: 10.1172/jci.insight.95042
  55. Smilde BJ, Stockklausner C, Keen R, et al. Protocol paper: a multi-center, double-blinded, randomized, 6-month, placebo-controlled study followed by 12-month open label extension to evaluate the safety and efficacy of Saracatinib in Fibrodysplasia Ossificans Progressiva (STOPFOP). BMC Musculoskelet Disord. 2022;23(1):519. doi: 10.1186/s12891-022-05471-x
  56. Singh S, Kidane J, Wentworth KL, et al. Surgical management of bilateral hip fractures in a patient with fibrodysplasia ossificans progressiva treated with the RAR-γ agonist palovarotene: a case report. BMC Musculoskelet Disord. 2020;21(1):204. doi: 10.1186/s12891-020-03240-2

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Radiograph of the elbow joint: massive heterotopic ossification of the shoulder and forearm causing contracture of the elbow joint.

Download (138KB)
3. Fig. 2. Radiograph of the shoulder joint: heterotopic ossificatum emanating from the humerus and restricting movement in the shoulder joint.

Download (146KB)
4. Fig. 3. Chest radiograph: multiplanar fixed deformity of the spine, multiple heterotopic ossifications of the chest and paravertebral region, thoracic deformity.

Download (119KB)
5. Fig. 4. CT scan of the cervical spine, sagittal view: synostosis of the bodies and posterior elements of the C2-C5 vertebrae, heterotopic ossifications of the neck muscles.

Download (96KB)
6. Fig. 5. Three-dimensional CT reconstruction of the cervical spine, anterior view: synostosis of the C2-C5 vertebrae.

Download (135KB)
7. Fig. 6. Radiography of hip joints: marked synovial chondromatosis of both hip joints, heterotopic ossificates in the pelvis and hip joints.

Download (128KB)
8. Fig. 7. Three-dimensional CT reconstruction of the hip joints, anterior view: marked synovial chondromatosis.

Download (134KB)
9. Fig. 8. Three-dimensional CT reconstruction of the hip joints, posterior view: ossificatum is identified causing synostosis between the sacrum and the proximal femur.

Download (121KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».