Переход от эргодических режимов к режимам многочастичной локализации в открытых квантовых системах с точки зрения нейросетевого представления

Обложка

Цитировать

Полный текст

Аннотация

Целью нашей работы является исследование асимптотических стационарных состояний открытой неупорядоченной многочастичной квантовой модели, которая характеризуется переходом эргодическая фаза — многочастичная локализация (МЧЛ). Чтобы найти эти состояния, мы используем нейросетевой анзац, новый метод моделирования сложных квантовых состояний многих тел, предложенный и обсуждаемый в недавних публикациях. Наш главный результат состоит в том, что переход эргодическая фаза – многочастичная локализация обнаруживается в работе нейронной сети, которая обучена воспроизводить асимптотические состояния модели. Хотя сеть способна воспроизводить с относительно высокой точностью эргодические состояния, она не может этого сделать, когда модельная система входит в MЧЛ-фазу. Мы заключаем, что особенности MЧЛ-режима трансформируются в ландшафт функции стоимости, который становится сильно неравномерным и приобретает множество локальных минимумов. 

Об авторах

Игорь Ильясович Юсипов

Национальный исследовательский Нижегородский государственный университет имени Н. И. Лобачевского (ННГУ)

ORCID iD: 0000-0002-0540-9281
603950 Нижний Новгород, проспект Гагарина, 23

Евгений Александрович Козинов

Национальный исследовательский Нижегородский государственный университет имени Н. И. Лобачевского (ННГУ)

ORCID iD: 0000-0001-6776-0096
603950 Нижний Новгород, проспект Гагарина, 23

Татьяна Владимировна Лаптева

Национальный исследовательский Нижегородский государственный университет имени Н. И. Лобачевского (ННГУ)

ORCID iD: 0000-0002-9172-9424
603950 Нижний Новгород, проспект Гагарина, 23

Список литературы

  1. Bellman RE. Dynamic Programming. Princeton: Princeton University Press; 1957. 365 p.
  2. Meyerov I, Liniov A, Ivanchenko M, Denisov S. Simulating quantum dynamics: Evolution of algorithms in the HPC context. Lobachevskii Journal of Mathematics. 2020;41(8):1509-1520. doi: 10.1134/S1995080220080120.
  3. Eisert J, Cramer M, Plenio MB. Colloquium: Area laws for the entanglement entropy. Rev. Mod. Phys. 2010;82(1):277-306. doi: 10.1103/RevModPhys.82.277.
  4. Vidal G. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 2003;91(14):147902. doi: 10.1103/PhysRevLett.91.147902.
  5. Carleo G, Troyer M. Solving the quantum many-body problem with artificial neural networks. Science. 2017;355(6325):602-606. doi: 10.1126/science.aag2302.
  6. Levine Y, Sharir O, Cohen N, Shashua A. Quantum entanglement in deep learning architectures. Phys. Rev. Lett. 2019;122(6):065301. doi: 10.1103/PhysRevLett.122.065301.
  7. Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge, Massachusetts: The MIT Press; 2016. 800 p.
  8. Melko RG, Carleo G, Carrasquilla J, Cirac JI. Restricted Boltzmann machines in quantum physics. Nature Physics. 2019;15(9):887-892. doi: 10.1038/s41567-019-0545-1.
  9. Deng DL, Li X, Das Sarma S. Quantum entanglement in neural network states. Phys. Rev. X. 2017;7(2):021021. doi: 10.1103/PhysRevX.7.021021.
  10. Lindblad G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 1976;48(2):119-130. doi: 10.1007/BF01608499.
  11. Vicentini F, Biella A, Regnault N, Ciuti C. Variational neural-network ansatz for steady states in open quantum systems. Phys. Rev. Lett. 2019;122(25):250503. doi: 10.1103/PhysRevLett.122.250503.
  12. Hartmann MJ, Carleo G. Neural-network approach to dissipative quantum many-body dynamics. Phys. Rev. Lett. 2019;122(25):250502. doi: 10.1103/PhysRevLett.122.250502.
  13. Torlai G, Melko RG. Latent space purification via neural density operators. Phys. Rev. Lett. 2018;120(24):240503. doi: 10.1103/PhysRevLett.120.240503.
  14. Yoshioka N, Hamazaki R. Constructing neural stationary states for open quantum many-body systems. Phys. Rev. B. 2019;99(21):214306. doi: 10.1103/PhysRevB.99.214306.
  15. Vakulchyk I, Yusipov I, Ivanchenko M, Flach S, Denisov S. Signatures of many-body localization in steady states of open quantum systems. Phys. Rev. B. 2018;98(2):020202. doi: 10.1103/PhysRevB.98.020202.
  16. Pal A, Huse DA. Many-body localization phase transition. Phys. Rev. B. 2010;82(17):174411. doi: 10.1103/PhysRevB.82.174411.
  17. Becca F, Sorella S. Quantum Monte Carlo Approaches for Correlated Systems. Cambridge: Cambridge University Press; 2017. 274 p. doi: 10.1017/9781316417041.
  18. NetKet [Electronic resource]. Available from: https://www.netket.org.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».