Transition from ergodic to many-body localization regimes in open quantum systems in terms of the neural-network ansatz

Capa

Citar

Texto integral

Resumo

The purpose of our work is to investigate asymptotic stationary states of an open disordered many-body quantum model which is characterized by an ergodic — many-body localization (MBL) phase transition. To find these states, we use the neural-network ansatz, a new method of modeling complex many-body quantum states discussed in the recent literature. Our main result is that that the ergodic phase — MBL transition is detectable in the performance of the neural network that is trained to reproduce the asymptotic states of the model. While the network is able to reproduce, with a relatively high accuracy, ergodic states, it fails to do so when the model system enter the MBL phase. We conclude that MBL features of the model translate into the cost function landscape which becomes corrugated and acquires many local minima.

Sobre autores

Igor Yusipov

Lobachevsky State University of Nizhny Novgorod

ORCID ID: 0000-0002-0540-9281
603950 Nizhny Novgorod, Gagarin Avenue, 23

Evgeniy Kozinov

Lobachevsky State University of Nizhny Novgorod

ORCID ID: 0000-0001-6776-0096
603950 Nizhny Novgorod, Gagarin Avenue, 23

Tatjana Laptyeva

Lobachevsky State University of Nizhny Novgorod

ORCID ID: 0000-0002-9172-9424
603950 Nizhny Novgorod, Gagarin Avenue, 23

Bibliografia

  1. Bellman RE. Dynamic Programming. Princeton: Princeton University Press; 1957. 365 p.
  2. Meyerov I, Liniov A, Ivanchenko M, Denisov S. Simulating quantum dynamics: Evolution of algorithms in the HPC context. Lobachevskii Journal of Mathematics. 2020;41(8):1509-1520. doi: 10.1134/S1995080220080120.
  3. Eisert J, Cramer M, Plenio MB. Colloquium: Area laws for the entanglement entropy. Rev. Mod. Phys. 2010;82(1):277-306. doi: 10.1103/RevModPhys.82.277.
  4. Vidal G. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 2003;91(14):147902. doi: 10.1103/PhysRevLett.91.147902.
  5. Carleo G, Troyer M. Solving the quantum many-body problem with artificial neural networks. Science. 2017;355(6325):602-606. doi: 10.1126/science.aag2302.
  6. Levine Y, Sharir O, Cohen N, Shashua A. Quantum entanglement in deep learning architectures. Phys. Rev. Lett. 2019;122(6):065301. doi: 10.1103/PhysRevLett.122.065301.
  7. Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge, Massachusetts: The MIT Press; 2016. 800 p.
  8. Melko RG, Carleo G, Carrasquilla J, Cirac JI. Restricted Boltzmann machines in quantum physics. Nature Physics. 2019;15(9):887-892. doi: 10.1038/s41567-019-0545-1.
  9. Deng DL, Li X, Das Sarma S. Quantum entanglement in neural network states. Phys. Rev. X. 2017;7(2):021021. doi: 10.1103/PhysRevX.7.021021.
  10. Lindblad G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 1976;48(2):119-130. doi: 10.1007/BF01608499.
  11. Vicentini F, Biella A, Regnault N, Ciuti C. Variational neural-network ansatz for steady states in open quantum systems. Phys. Rev. Lett. 2019;122(25):250503. doi: 10.1103/PhysRevLett.122.250503.
  12. Hartmann MJ, Carleo G. Neural-network approach to dissipative quantum many-body dynamics. Phys. Rev. Lett. 2019;122(25):250502. doi: 10.1103/PhysRevLett.122.250502.
  13. Torlai G, Melko RG. Latent space purification via neural density operators. Phys. Rev. Lett. 2018;120(24):240503. doi: 10.1103/PhysRevLett.120.240503.
  14. Yoshioka N, Hamazaki R. Constructing neural stationary states for open quantum many-body systems. Phys. Rev. B. 2019;99(21):214306. doi: 10.1103/PhysRevB.99.214306.
  15. Vakulchyk I, Yusipov I, Ivanchenko M, Flach S, Denisov S. Signatures of many-body localization in steady states of open quantum systems. Phys. Rev. B. 2018;98(2):020202. doi: 10.1103/PhysRevB.98.020202.
  16. Pal A, Huse DA. Many-body localization phase transition. Phys. Rev. B. 2010;82(17):174411. doi: 10.1103/PhysRevB.82.174411.
  17. Becca F, Sorella S. Quantum Monte Carlo Approaches for Correlated Systems. Cambridge: Cambridge University Press; 2017. 274 p. doi: 10.1017/9781316417041.
  18. NetKet [Electronic resource]. Available from: https://www.netket.org.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».