Параметрическое взаимодействие колебательных мод в присутствии квадратичной или кубической нелинейности
- Авторы: Тюрюкина Л.В.1,2
-
Учреждения:
- Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского (СГУ)
- Саратовский филиал Института радиотехники и электроники имени В.А. Котельникова РАН (СФ ИРЭ)
- Выпуск: Том 32, № 1 (2024)
- Страницы: 11-30
- Раздел: Статьи
- URL: https://ogarev-online.ru/0869-6632/article/view/252040
- DOI: https://doi.org/10.18500/0869-6632-003082
- EDN: https://elibrary.ru/YLPOLW
- ID: 252040
Цитировать
Полный текст
Аннотация
Об авторах
Людмила Владимировна Тюрюкина
Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского (СГУ) ; Саратовский филиал Института радиотехники и электроники имени В.А. Котельникова РАН (СФ ИРЭ)
ORCID iD: 0000-0002-4221-8900
Scopus Author ID: 6506227030
ResearcherId: E-3581-2013
410012, Россия, Саратов, ул. Астраханская, 83
Список литературы
- Демидов В. Е., Ковшиков Н. Г. Механизм возникновения и стохастизации автомодуляции интенсивных спиновых волн // Журнал технической физики. 1999. Т. 69, № 8. С. 100–103.
- Романенко Д. В. Генерация хаотической последовательности СВЧ-импульсов в автоколебательной системе с ферромагнитной плёнкой // Известия вузов. ПНД. 2012. Т. 20, № 1. С. 67–74. doi: 10.18500/0869-6632-2012-20-1-67-74.
- Wersinger J.-M., Finn J. M., Ott E. Bifurcation and ”strange” behavior in instability saturation by nonlinear three-wave mode coupling // The Physics of Fluids. 1980. Vol. 23, no. 6. P. 1142–1154. doi: 10.1063/1.863116.
- Savage C. M., Walls D. F. Optical chaos in second-harmonic generation // Optica Acta: International Journal of Optics. 1983. Vol. 30, no. 5. P. 557–561. doi: 10.1080/713821254.
- Lythe G. D., Proctor M. R. E. Noise and slow-fast dynamics in a three-wave resonance problem // Physical Review E. 1993. Vol. 47, no. 5. P. 3122–3127. doi: 10.1103/PhysRevE.47.3122.
- Кузнецов C. П. Параметрический генератор хаоса на варакторном диоде с распадным механизмом ограничения неустойчивости // Журнал технической физики. 2016. Т. 86, № 3. С. 118–127.
- Пиковский А. С., Рабинович М. И., Трахтенгерц В.Ю. Возникновение стохастичности при распадном ограничении параметрической неустойчивости // Журнал экспериментальной и теоретической физики. 1978. Т. 74, № 4. С. 1366–1374.
- Вышкинд С. Я., Рабинович М. И. Механизм стохастизации фаз и структура волновой турбулентности в диссипативных средах // Журнал экспериментальной и теоретической физики. 1976. T. 71, № 2. С. 557–571.
- Рабинович М. И., Фабрикант А. Л. Стохастическая автомодуляция волн в неравновесных средах // Журнал экспериментальной и теоретической физики. 1979. Т. 77, № 2. С.617–629.
- Кузнецов С. П., Тюрюкина Л. В. Сложная динамика и хаос в электронном автогенераторе с насыщением, обеспечиваемым параметрическим распадом // Известия вузов. ПНД. 2018. Т. 26, № 1. С. 33–47. doi: 10.18500/0869-6632-2018-26-1-33-47.
- Danca M.-F., Chen G. Bifurcation and chaos in a complex model of dissipative medium // International Journal of Bifurcation and Chaos. 2004. Vol. 14, no. 10. P. 3409–3447. DOI: 10.1142/ S0218127404011430.
- Danca M.-F., Feckan M., Kuznetsov N., Chen G. Looking more closely at the Rabinovich– Fabrikant system // International Journal of Bifurcation and Chaos. 2016. Vol. 26, no. 2. P. 1650038. doi: 10.1142/S0218127416500383.
- Liu Y., Yang Q., Pang G. A hyperchaotic system from the Rabinovich system // Journal of Computational and Applied Mathematics. 2010. Vol. 234, no. 1. P. 101–113. doi: 10.1016/j.cam. 2009.12.008.
- Agrawal S. K., Srivastava M., Das S. Synchronization between fractional-order Ravinovich– Fabrikant and Lotka–Volterra systems // Nonlinear Dynamics. 2012. Vol. 69, no. 4. P. 2277–2288. doi: 10.1007/s11071-012-0426-y.
- Srivastava M., Agrawal S. K., Vishal K., Das S. Chaos control of fractional order Rabinovich– Fabrikant system and synchronization between chaotic and chaos controlled fractional order Rabinovich–Fabrikant system // Applied Mathematical Modelling. 2014. Vol. 38, no. 13. P. 3361– 3372. doi: 10.1016/j.apm.2013.11.054.
- Danca M.-F. Hidden transient chaotic attractors of Rabinovich–Fabrikant system // Nonlinear Dynamics. 2016. Vol. 86, no. 2. P. 1263–1270. doi: 10.1007/s11071-016-2962-3.
- Danca M.-F., Kuznetsov N., Chen G. Unusual dynamics and hidden attractors of the Rabinovich– Fabrikant system // Nonlinear Dynamics. 2017. Vol. 88, no. 1. P. 791–805. doi: 10.1007/s11071- 016-3276-1.
- Кузнецов А. П., Кузнецов С. П., Тюрюкина Л. В. Сложная динамика и хаос в модельной системе Рабиновича–Фабриканта // Известия Саратовского университета. Новая серия. Серия: Физика. 2019. T. 19, № 1. С. 4–18. doi: 10.18500/1817-3020-2019-19-1-4-18.
- Кузнецов С. П., Тюрюкина Л. В. Обобщенная система Рабиновича–Фабриканта: уравнения и динамика // Известия вузов. ПНД. 2022. T. 30, № 1. С. 7–29. doi: 10.18500/0869-6632-2022- 30-1-7-29.
- Тюрюкина Л. В. Динамика системы Рабиновича–Фабриканта и ее обобщенной модели в случае отрицательных значений параметров, имеющих смысл коэффициентов диссипации // Известия вузов. ПНД. 2022. T. 30, № 6. С. 685–701. doi: 10.18500/0869-6632-003015.
- Hocking L. M., Stewartson K. On the nonlinear response of a marginally unstable plane parallel flow to a two-dimensional disturbance // Proc. R. Soc. Lond. A. 1972. Vol. 326, no. 1566. P. 289–313. doi: 10.1098/rspa.1972.0010.
- Kuramoto Y., Yamada T. Turbulent state in chemical reactions // Progress of Theoretical Physics. 1976. Vol. 56, no. 2. P. 679–681. doi: 10.1143/PTP.56.679.
- Кузнецов А. П., Сатаев И. Р., Тюрюкина Л. В. Синхронизация квазипериодических колебаний связанных фазовых осцилляторов // Письма в ЖТФ. 2010. Т. 36, № 10. С. 73–80.
- Pazo D., Sanchez E., Matıas M. A. Transition to high-dimensional chaos through quasiperiodic motion // International Journal of Bifurcation and Chaos. 2001. Vol. 11, no. 10. P. 2683–2688. doi: 10.1142/S0218127401003747.
- Kuznetsov A. P., Sataev I. R., Turukina L. V. Regional structure of two- and three-frequency regimes in a model of four phase oscillators // International Journal of Bifurcation and Chaos. 2022. Vol. 32, no. 3. P. 2230008. doi: 10.1142/S0218127422300087.
- Кузнецов C. П. Динамический хаос. М.: Физматлит, 2006. 356 c.
Дополнительные файлы
