Investigation of wave processes and rhythmic activity of the human brain using the Walsh orthogonal function system
- Authors: Stepanyan I.V.1, Lednev M.Y.1
-
Affiliations:
- Blagonravov Mechanical Engineering Research Institute of RAS
- Issue: Vol 33, No 4 (2025)
- Pages: 545-556
- Section: Nonlinear dynamics and neuroscience
- URL: https://ogarev-online.ru/0869-6632/article/view/358008
- DOI: https://doi.org/10.18500/0869-6632-003175
- EDN: https://elibrary.ru/UYYJRQ
- ID: 358008
Cite item
Full Text
Abstract
About the authors
Ivan Viktorovich Stepanyan
Blagonravov Mechanical Engineering Research Institute of RAS
ORCID iD: 0000-0003-3176-5279
SPIN-code: 5644-6735
4, M. Kharitonyevskiy Pereulok, 101990 Moscow, the Russian Federation
Mikhail Yuryevich Lednev
Blagonravov Mechanical Engineering Research Institute of RAS
ORCID iD: 0000-0002-5919-0190
SPIN-code: 4277-6912
Scopus Author ID: 57216152928
ResearcherId: AAH-1782-2022
4, M. Kharitonyevskiy Pereulok, 101990 Moscow, the Russian Federation
References
- Ke J., Du J., Luo X. The effect of noise content and level on cognitive performance measured by electroencephalography (EEG) // Automation in Construction. 2021. Vol. 130. P. 103836. doi: 10.1016/j.autcon.2021.103836.
- Prasanna J. P., Subathra M. S. P., Mohammed M. A., Maashi M. S., Garcia-Zapirain B., Sairamya N. J., George S. T. Detection of focal and non-focal electroencephalogram signals using fast Walsh-Hadamard transform and artificial neural network // Sensors. 2020. Vol. 20, no. 17. P. 4952. doi: 10.3390/s20174952.
- Goker H., Tosun M. Fast Walsh–Hadamard transform and deep learning approach for diagnosing psychiatric diseases from electroencephalography (EEG) signals // Neural Comput. Applic. 2023. Vol. 35. P. 23617–23630. doi: 10.1007/s00521-023-08971-6.
- Goshvarpour A., Goshvarpour A. Analytic representation vs. angle modulation of Hilbert transform of fast Walsh-Hadamard coefficients (HTFWHC) in epileptic EEG classification // Braz. J. Phys. 2023. Vol. 53. P. 15. doi: 10.1007/s13538-022-01231-3.
- Mohsen S., Ghoneim S. S. M., Alzaidi M. S., Alzahrani A., Ali Hassan A. M. Classification of electroencephalogram signals using LSTM and SVM based on fast walsh-hadamard transform // Comput. Mater. Contin. 2023. Vol. 75, no. 3. P. 5271–5286. doi: 10.32604/cmc.2023.038758.
- Shakya N., Dubey R., Shrivastava L. Stress detection using EEG signal based on fast Walsh Hadamard transform and voting classifier // Preprint Research Square. 2021. doi: 10.21203/rs.3.rs- 782483/v1.
- Ergun E., Aydemir O. A hybrid BCI using singular value decomposition values of the fast walsh-hadamard transform coefficients // IEEE Transactions on Cognitive and Developmental Systems. 2020. Vol. 15, no. 2. P. 454–463. doi: 10.1109/TCDS.2020.3028785.
- Yuan X., Cai Z. A generalized Walsh system and its fast algorithm // IEEE Transactions on Signal Processing. 2021. Vol. 69. P. 5222–5233. doi: 10.1109/TSP.2021.3099635.
- Widdess-Walsh P. Resting but not idle: Insights into epilepsy network suppression from intracranial EEG // Epilepsy Currents. 2024. Vol. 24, no. 1. P. 25–27. doi: 10.1177/1535759723 1213247.
- Vaithialingam B., Rudrappa S. Intraoperative visualisation of 3 Hz spike–wave epileptic discharges in the electroencephalographic signal of bispectral index monitor in a patient with absence seizures // Indian J. Anaesth. 2024. Vol. 68, no. 2. P. 209–210. doi: 10.4103/ija.ija_710_23.
- Salami A., Andreu-Perez J., Gillmeister H. Finding neural correlates of depersonalisation/ derealisation disorder via explainable CNN-based analysis guided by clinical assessment scores // Artif. Intell. Med. 2024. Vol. 149. P. 102755. doi: 10.1016/j.artmed.2023.102755.
- Taylor J. A., Garrido M. I. Porthole and Stormcloud: tools for visualisation of spatiotemporal M/EEG statistics // Neuroinformatics. 2020. Vol. 18. no. 3. P. 351–363. doi: 10.1007/s12021- 019-09447-6.
- QiHan P. W., Alipal J., Suberi A. A. M., Fuad N., Wahab M. H. A., Idrus S. Z. S. A new perspective on visualising EEG signal of post-stroke patients // IOP Conf. Ser.: Mater. Sci. Eng. 2020. Vol. 917, no. 1. P. 012047. doi: 10.1088/1757-899X/917/1/012047.
- Gomez L. C., Herv as R., Gonz alez I., Villarreal V. Studying the generalisability of cognitive load measured with EEG // Biomedical Signal Processing and Control. 2021. Vol. 70. P. 103032. doi: 10.1016/j.bspc.2021.103032.
- Caillet B., Devenes S., Ma ` tre G., Hight D., Mirra A., Levionnois O., Simalatsar A. General Anaesthesia Matlab-based Graphical User Interface: A tool for EEG signal acquisition, processing and visualisation offline and in real-time. 2023. doi: 10.13140/RG.2.2.33243.68647.
- Cao J., Zhao Y., Shan X., Wei H. L., Guo Y., Chen L., Erkoyuncu J. A., Sarrigiannis P. G. Brain functional and effective connectivity based on electroencephalography recordings: A review // Hum. Brain Mapp. 2022. Vol. 43, no. 2. P. 860–879. doi: 10.1002/hbm.25683.
- Cabanero L., Herv as R., Gonz alez I., Fontecha J., Mond ejar T., Bravo J. Characterisation of mobile-device tasks by their associated cognitive load through EEG data processing // Future Generation Computer Systems. 2020. Vol. 113. P. 380–390. doi: 10.1016/j.future.2020.07.013.
- Costadopoulos N., Islam M. Z., Tien D. A knowledge discovery and visualisation method for unearthing emotional states from physiological data // Int. J. Mach. Learn. & Cyber. 2021. Vol. 12, no. 3. P. 843–858. doi: 10.1007/s13042-020-01205-4.
- Montazeri S., Pinchefsky E., Tse I., Marchi V., Kohonen J., Kauppila M., Airaksinen M., Tapani K., Nevalainen P., Hahn C., Tam E. W. Y., Stevenson N. J., Vanhatalo S. Building an open source classifier for the neonatal EEG background: A systematic feature-based approach from expert scoring to clinical visualization // Front. Hum. Neurosci. 2021. Vol. 15. P. 675154. doi: 10.3389/fnhum.2021.675154.
- Goldberger A. L., Amaral L. A., Glass L., Hausdorff J. M., Ivanov P. C., Mark R. G., Mietus J. E., Moody G. B., Peng C. K., Stanley H. E. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals // Circulation. 2000. Vol. 101, no. 23. P. E215–E220. doi: 10.1161/01.cir.101.23.e215.
- Zym I., Tukaev S., Seleznov I., Kiyono K., Popov A., Chernykh M., Shpenkov O. Electroencephalograms during Mental Arithmetic Task Performance // Data. 2019. Vol. 4, no. 1. P. 14. doi: 10.3390/data4010014.
- Stepanyan I. V., Lednev M. Y.. Visualization of the Signals Entropy Structure Based on Walsh– Hadamard Functions // Symmetry. 2024. Vol. 16, no. 1. P. 59. doi: 10.3390/sym16010059.
- Степанян И. В., Леднев М. Ю. Алгоритмы визуализации молекулярно-генетических последовательностей в пространствах двоично-ортогональных функций Уолша. М.: «КДУ», «Добросвет», 2020. 193 с. doi: 10.31453/kdu.ru.978-5-7913-1159-7-2020-193.
- Аристов В. В., Кубряк О. В., Степанян И. В. Расчёт циклических характеристик электроэнцефалограммы для исследования электрической активности мозга // Известия вузов. ПНД. 2023. Т. 31, № 4. С. 469–483. doi: 10.18500/0869-6632-003051.
Supplementary files


