A method for constructing a complete bifurcation picture of a boundary value problem for nonlinear partial differential equations: application of the Kolmogorov-Arnold theorem

Cover Page

Cite item

Full Text

Abstract

The purpose of this study is to develop a numerical method for bifurcation analysis of nonlinear partial differential equations, based on the reduction of partial differential equations to ordinary ones, using the Kolmogorov-Arnold theorem. Methods. This paper describes a method for reducing partial differential equations to ordinary ones using the Kolmogorov-Arnold theorem, as well as methods for the bifurcation analysis of nonlinear boundary value problems for ordinary differential equations. Results. The paper presents a new method for solving and bifurcation analysis of nonlinear boundary value problems for partial differential equations, which allow variational formulation. The method was applied to a nonlinear two-dimensional Bratu problem with Dirichlettype boundary conditions. Conclusion. A new method of bifurcation analysis for nonlinear partial differential equations has been developed. Specifically, a method has been proposed for reducing partial different equations to ordinary equations, which allows the use of the developed apparatus of bifurcation analysis for boundary value problems of ordinary differential equations. This method allows conducting bifurcation analysis for arbitrary nonlinear partial differential equations.  

About the authors

Vasily Alexandrovich Gromov

National Research University "Higher School of Economics"

ORCID iD: 0000-0001-5891-6597
Scopus Author ID: 35228959300
ResearcherId: M-6614-2015
ul. Myasnitskaya 20, Moscow, 101000, Russia

Korney Kirillovich Tomashchuk

National Research University "Higher School of Economics"

ul. Myasnitskaya 20, Moscow, 101000, Russia

Yury Nikolaevich Beschastnov

National Research University "Higher School of Economics"

ORCID iD: 0000-0001-6511-5894
ul. Myasnitskaya 20, Moscow, 101000, Russia

Artem Aleksandrovich Sidorenko

National Research University "Higher School of Economics"

ul. Myasnitskaya 20, Moscow, 101000, Russia

Vasily Vladimirovich Kakurin

National Research University "Higher School of Economics"

ORCID iD: 0009-0004-3660-871X
ul. Myasnitskaya 20, Moscow, 101000, Russia

References

  1. Арнольд В. И., Варченко А. Н., Гусейн-Заде С. М. Особенности дифференцируемых отображений: Монодромия и асимптотики интегралов. M.: Наукa, 1984. 355 c.
  2. Гилмор Р. Прикладная теория катастроф: в 2 т. М.: Мир. Т. 1. 1984. 350 c. T. 2. 1984. 286 c.
  3. Gilmore R. Catastrophe theory // In: Trigg G. L. (ed) Encyclopedia of Applied Physics. Vol. 3. N.Y.: Wiley, 1992. P. 85–115.
  4. Obodan N. I., Gromov V. A. Numerical analysis of the branching of solutions to nonlinear equations for cylindrical shells // Int. Appl. Mech. 2006. Vol. 42. P. 90–97. doi: 10.1007/s10778-006-0062-7.
  5. Obodan N. I., Lebedeyev O. G., Gromov V. A. Nonlinear Behaviour and Stability of Thin-Walled Shells. Berlin: Springer, 2013. 178 p. doi: 10.1007/978-94-007-6365-4.
  6. Obodan N. I., Adlucky V. J., Gromov V. A. Rapid identification of pre-buckling states: a case of cylindrical shell // Thin-Walled Structures. 2018. Vol. 124. P. 449–457. doi: 10.1016/j.tws. 2017.12.034.
  7. Obodan N. I., Adlucky V. J., Gromov V. A. Prediction and control of buckling: the inverse bifurcation problems for von Karman equations // In: Dutta H., Peters J. (eds) Applied Mathematical Analysis: Theory, Methods, and Applications. Cham: Springer, 2020. P. 353–381. doi: 10.1007/978-3-319- 99918-0_11.
  8. Obodan N. I., Gromov V. A. The complete bifurcation structure of nonlinear boundary problem for cylindrical panel subjected to uniform external pressure // Thin-Walled Structures. 2016. Vol. 107. P. 612–619. doi: 10.1016/j.tws.2016.07.020.
  9. Obodan N. I., Gromov V. A. Nonlinear behavior and buckling of cylindrical shells subjected to localized external pressure // Journal of Engineering Mathematics. 2013. Vol. 78. P. 239–248. doi: 10.1007/s10665-012-9553-1.
  10. Antman S. S. Bifurcation Theory and Nonlinear Eigenvalue Problems. San Francisco: WA Benjamin, 1969. 434 p.
  11. Kantorovich L. V. Approximate Methods of Higher Analysis. N.Y.: Interscience Publishers, 1958. 681 p.
  12. Awrejcewicz J., Krysko-Jr. V. A., Kalutsky L. A., Zhigalov M. V., Krysko V. A. Review of the methods of transition from partial to ordinary differential equations: From macro- to nano-structural dynamics // Arch. Computat. Methods Eng. 2021. Vol. 28. P. 4781–4813. doi: 10.1007/s11831- 021-09550-5.
  13. Gromov V. A. On an approach to solve nonlinear elliptic equations of von Karman type // Вiсник Днiпропетровського унiверситету Серiя Моделювання. 2017. Т. 25, № 8. С. 122–141. doi: 10.15421/141707.
  14. Gromov V. A. Postcritical Behaviour and Solution Branching for the Cylindrical Shell Theory Nonlinear Problems. PHD Thesis. Dnepropetrovsk: Dnepropetrovsk State University, 2006.
  15. Колмогоров A. Н. О представлении непрерывных функций нескольких переменных суперпозициями непрерывных функций меньшего числа переменных // Докл. АН СССР. 1957. Т. 108. С. 179–182.
  16. Maiorov V., Pinkus A. Lower bounds for approximation by MLP neural networks // Neurocomputing. 1999. Vol. 25, iss. 1–3. P. 81–91. doi: 10.1016/S0925-2312(98)00111-8.
  17. Sprecher D. A. A numerical implementation of Kolmogorov’s superpositions // Neural Netw. 1996. Vol. 9, no. 5. P. 765–772. doi: 10.1016/0893-6080(95)00081-x.
  18. Sprecher D. A. A numerical implementation of Kolmogorov’s superpositions II // Neural Netw. 1997. Vol. 10, no. 3. P. 447–457. doi: 10.1016/s0893-6080(96)00073-1.
  19. Shapiro H. S. Topics in Approximation Theory. Berlin: Springer, 1971. 278 p. DOI: 10.1007/ BFb0058976.
  20. Doss R. Representations of continuous functions of several variables // American Journal of Mathematics. 1976. Vol. 98, no. 2. P. 375–383. doi: 10.2307/2373891.
  21. Витушкин А. Г. О многомерных вариациях. M.: Гостехиздат, 1955. 220 с.
  22. Bratu G. Sur les equations integrales non lineaires // Bulletin de la Soci et e Math ematique de France. 1914. Vol. 42. P. 113–142. doi: 10.24033/bsmf.943.
  23. Koppen M. On the training of a Kolmogorov network // In: Dorronsoro J. R. (ed) Artificial Neural Networks – ICANN 2002. Lecture Notes in Computer Science, vol. 2415. Berlin: Springer, 2002. P. 474–479. doi: 10.1007/3-540-46084-5_77.
  24. Actor J. Computation for the Kolmogorov Superposition Theorem. PhD Thesis. Houston: Rice University, 2018. 148 p.
  25. Liu Z., Wang Y., Vaidya S., Ruehle F., Halverson J., Soljaci c M., Hou T. Y., Tegmark M. KAN: Kolmogorov-Arnold networks // arXiv:2404.19756. ArXiv Preprint, 2024. DOI: 10.48550/ arXiv.2404.19756.
  26. Lorentz G. G. Approximation of Functions. New York: Holt, Rinehart and Winston, 1966. 188 p.
  27. Nguyen V. P., Rabczuk T., Bordas S., Duflot M. Meshless methods: A review and computer implementation aspects // Mathematics and Computers in Simulation. 2008. Vol. 79, iss. 3. P. 763–813. doi: 10.1016/j.matcom.2008.01.003.
  28. Железко И. П., Ободан Н. И. Вторичные ветвления и закритическое поведение тонкостенных оболочек при неоднородной деформации // ПММ. 1997. Т. 61, № 2. С. 344–349.
  29. Poston T., Stewart I. Catastrophe Theory and Its Applications. Gloucester: Courier Corporation, 2014. 512 p.
  30. Gromov V. A., Borisenko E. A. Predictive clustering on non-successive observations for multi-step ahead chaotic time series prediction // Neural Comput. Applic. 2015. Vol. 26. P. 1827–1838. doi: 10.1007/s00521-015-1845-8.
  31. Андреев Л. В., Ободан Н. И., Лебедев A. Г. Устойчивость оболочек при неосесимметричной деформации. М.: Наука, 1988. 208 с.
  32. Фомин С., Алексеев В., Тихомиров В. Оптимальное управление. М.: Физматлит, 2005. 385 с.
  33. Odejide S. A., Aregbesola Y. A. S. A note on two dimensional Bratu problem // Kragujevac Journal of Mathematics. 2006. Vol. 29. P. 49–56.
  34. Temimi H., Ben-Romdhane M., Baccouch M., Musa M. O. A two-branched numerical solution of the two-dimensional Bratu’s problem // Applied Numerical Mathematics. 2020. Vol. 153. P. 202–216. doi: 10.1016/j.apnum.2020.02.010.
  35. Boyd J. P. An analytical and numerical study of the two-dimensional Bratu equation // J. Sci. Comput. 1986. Vol. 1. P. 183–206. doi: 10.1007/BF01061392.
  36. Витушкин A. Г., Хенкин Г. M. Линейные суперпозиции функций // УМН. 1967. Т. 22, № 1. С. 77–124.
  37. Gromov V. A. Catastrophes of cylindrical shell // In: Dutta H. (ed) Mathematical Modelling: Principle and Theory. Providence: American Mathematical Society, 2023. P. 215–244. DOI:10.1090/ conm/786/15798.
  38. Courant R., Hilbert D. Methods of Mathematical Physics. Vol. 1. N.Y.: Wiley, 2008. 575 p.
  39. Вайнберг М. М., Треногин В. А. Теория ветвления решений нелинейных уравнений. М.: Наука, 1969. 527 с.
  40. Agapov M. S., Kuznetsov E. B., Shalashilin V. I. Numerical modeling of the problem of strong nonlinear deformation in Eulerian coordinates // Math. Models Comput. Simul. 2009. Vol. 1. P. 263–273. doi: 10.1134/S2070048209020094.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).