Marking stages of REM and non-REM sleep using recurrent analysis

Cover Page

Cite item

Full Text

Abstract

The purpose of this study — to develop a simple technique for labeling sleep stages according to EEG data obtained from half-somnography recordings. To test the work of the method, it will be applied to three groups of subjects: conditionally healthy, patients with Parkinson’s disease, patients with sleep apnea. Methods. In this work, to recognize sleep stages, we use the calculation of a recurrent indicator and its subsequent assessment. It is shown that the stages of REM (Rapid Eye Movement) and non-REM sleep demonstrate different values of the recurrent index. Results. Depending on the range in which the recurrent indicator falls, the stages of REM and non-REM sleep were determined for the subjects, according to their nightly polysomnographic records. For three groups of subjects, the average knowledge of the accuracy of the method was calculated, which for all groups exceeded 72.5%. Conclusion. It is shown that on the basis of recurrent analysis it is possible to create a simple and effective method for recognizing sleep stages. For patients with apnea, the average accuracy of the method is higher than for apparently healthy subjects, for whom, in turn, this value was higher than for patients with Parkinson’s disease. This can be explained by the fact that the variability in the group of statistical characteristics of sleep stages in patients with apnea is lower, and in patients with Parkinson’s disease is higher, compared with apparently healthy subjects.

About the authors

Elizaveta Petrovna Emelyanova

Saratov State University

ORCID iD: 0000-0001-5535-8921
SPIN-code: 6722-8649
ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Anton Olegovich Selskii

Saratov State University

ORCID iD: 0000-0003-3175-895X
SPIN-code: 7269-0414
Scopus Author ID: 54882328300
ResearcherId: A-9503-2015
ul. Astrakhanskaya, 83, Saratov, 410012, Russia

References

  1. Ebrahimi F, Alizadeh I. Automatic sleep staging by cardiorespiratory signals: a systematic review. Sleep and Breathing. 2002;26(2):965–981. doi: 10.1007/s11325-021-02435-8.
  2. Mikkelsen KB, Villadsen DB, Otto M, Kidmose P. Automatic sleep staging using ear-EEG. BioMedical Engineering OnLine. 2017;16(1):111. doi: 10.1186/s12938-017-0400-5.
  3. Parro VC, Valdo L. Sleep-wake detection using recurrence quantification analysis. Chaos. 2018;28(8):085706. doi: 10.1063/1.5024692.
  4. Acharya UR, Sree SV, Swapna G, Martis RJ, Suri JS. Automated EEG analysis of epilepsy: A review. Knowledge-Based Systems. 2013;45:147–165. doi: 10.1016/j.knosys.2013.02.014.
  5. Acharya UR, Sree SV, Chattopadhyay S, Yu W, Ang PCA. Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. International Journal of Neural Systems. 2011;21(3):199–211. doi: 10.1142/S0129065711002808.
  6. Eckmann JP, Kamphorst SO, Ruelle D. Recurrence plots of dynamical systems. Europhysics Letters. 1987;4(9):973–977. doi: 10.1209/0295-5075/4/9/004.
  7. Ramos AMT, Builes-Jaramillo A, Poveda G, Goswami B, Macau EEN, Kurths J, Marwan N. Recurrence measure of conditional dependence and applications. Phys. Rev. E. 2017;95(5):052206. doi: 10.1103/PhysRevE.95.052206.
  8. Zhu L, Wang C, He Z, Zhang Y. A lightweight automatic sleep staging method for children using single-channel EEG based on edge artificial intelligence. World Wide Web. 2022;25(5):1883–1903. doi: 10.1007/s11280-021-00983-3.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».