Разметка стадий быстрого и медленного сна с помощью рекуррентного анализа

Обложка

Цитировать

Полный текст

Аннотация

Цель настоящего исследования — разработать простую методику разметки стадий сна по данным ЭЭГ, полученным из полисомнографических записей. Для проверки работы метода он применен к трем группам испытуемых: условно здоровым, пациентам с болезнью Паркинсона, пациентам с апноэ. Методы. Для распознавания стадий сна используется расчет рекуррентного показателя и его последующая оценка. Показано, что стадии быстрого и медленного сна демонстрируют различные значения рекуррентного показателя. Результаты. В зависимости от того, в какой диапазон попадает рекуррентный показатель, определялись стадии быстрого и медленного сна для испытуемых по их ночным полисомнографическим записям. Для трех групп испытуемых были рассчитаны средние значения точности метода, которые в среднем превышают 72.5%. Заключение. Показано, что на основе рекуррентного анализа возможно создать простой и эффективный метод распознавания стадий сна. Для пациентов с апноэ среднее значение точности метода выше, чем для условно здоровых испытуемых, для которых, в свою очередь, это значение было выше, чем для пациентов с болезнью Паркинсона. Это можно объяснить тем, что изменчивость статистических характеристик рекуррентного показателя по стадиям сна в группе у пациентов с апноэ ниже, а у пациентов с болезнью Паркинсона выше по сравнению с условно здоровыми испытуемыми.

Об авторах

Елизавета Петровна Емельянова

Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского (СГУ)

ORCID iD: 0000-0001-5535-8921
SPIN-код: 6722-8649
410012, Россия, Саратов, ул. Астраханская, 83

Антон Олегович Сельский

Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского (СГУ)

ORCID iD: 0000-0003-3175-895X
SPIN-код: 7269-0414
Scopus Author ID: 54882328300
ResearcherId: A-9503-2015
410012, Россия, Саратов, ул. Астраханская, 83

Список литературы

  1. Ebrahimi F, Alizadeh I. Automatic sleep staging by cardiorespiratory signals: a systematic review. Sleep and Breathing. 2002;26(2):965–981. doi: 10.1007/s11325-021-02435-8.
  2. Mikkelsen KB, Villadsen DB, Otto M, Kidmose P. Automatic sleep staging using ear-EEG. BioMedical Engineering OnLine. 2017;16(1):111. doi: 10.1186/s12938-017-0400-5.
  3. Parro VC, Valdo L. Sleep-wake detection using recurrence quantification analysis. Chaos. 2018;28(8):085706. doi: 10.1063/1.5024692.
  4. Acharya UR, Sree SV, Swapna G, Martis RJ, Suri JS. Automated EEG analysis of epilepsy: A review. Knowledge-Based Systems. 2013;45:147–165. doi: 10.1016/j.knosys.2013.02.014.
  5. Acharya UR, Sree SV, Chattopadhyay S, Yu W, Ang PCA. Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. International Journal of Neural Systems. 2011;21(3):199–211. doi: 10.1142/S0129065711002808.
  6. Eckmann JP, Kamphorst SO, Ruelle D. Recurrence plots of dynamical systems. Europhysics Letters. 1987;4(9):973–977. doi: 10.1209/0295-5075/4/9/004.
  7. Ramos AMT, Builes-Jaramillo A, Poveda G, Goswami B, Macau EEN, Kurths J, Marwan N. Recurrence measure of conditional dependence and applications. Phys. Rev. E. 2017;95(5):052206. doi: 10.1103/PhysRevE.95.052206.
  8. Zhu L, Wang C, He Z, Zhang Y. A lightweight automatic sleep staging method for children using single-channel EEG based on edge artificial intelligence. World Wide Web. 2022;25(5):1883–1903. doi: 10.1007/s11280-021-00983-3.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».