Identification and dynamics prediction of a plane vortex structure based on a mathematical model of a point vortices system

Capa

Citar

Texto integral

Resumo

The aim of the article is developing and analyse an algorithmic method for solution finding of one inverse problem of 2d vortex fluid dynamics. It is identification and prediction of the flow structure evolution of the based on the data on fluid velocity vectors in a set of reference points. Theoretical analysis of convergence and adequacy of the method is difficult due to the ill-posedness typical of inverse problems, these issues studied experimentally. Methods. The proposed method uses a mathematical model of a point vortex dynamics system for identification and prediction flow structures. The parameters of the model system are found by minimising the functional that evaluates the closeness of the original and model vectors fields at the reference points. The prediction of the vortex structure dynamics is based on the solution of the Cauchy problem for a system of ordinary differential equations with the parameters found in the first stage. Results. As a result of the calculations, we found it out: the algorithm converges to the desired minimum from a wide range of initial approximations; the algorithm converges in all cases when the identified structure consists of sufficiently distant vortices; the forecast of the development of the current gives good results with a steady flow; if the above conditions are violated, the part of successful calculations decreases, false identification and an erroneous forecast may occur; with the convergence of the method, the coordinates and circulation of the eddies of the model system are close to the characteristics of the eddies of the test configurations; the structures of the streamlines of the flows are topologically equivalent; convergence depends more on location than on the number of vectors used for identification. Conclusion. An algorithm for solving the problem of identifying and the evolution forecast of a 2d vortex flow structure is proposed when the fluid velocity vectors in a finite set of reference points are known. The method showed its high efficiency when using from 40 to 200 reference points. The results of the study make it possible to recommend the proposed algorithm for identifying flat vortex structures, which consist of vortices separated from each other.

Sobre autores

V. Govorukhin

Southern Federal University

ORCID ID: 0000-0001-8459-7841
Código SPIN: 9852-4376
Scopus Author ID: 6602725971
Researcher ID: S-3388-2016
ul. Bol`shaya Sadovaya 105/42, Rostov-on-Don, 344006, Russia

Bibliografia

  1. Алексанина М. Г., Еременко А. С., Загумённов А. А., Качур В. А. Вихри в океане и атмосфере: расчет по спутниковым изображениям // Метеорология и гидрология. 2016. № 9. C. 41–54.
  2. Белоненко Т.В., Шоленинова П.В. Об идентификации синоптических вихрей по спутниковым данным на примере акватории северо-западной части Тихого океана // Современные проблемы дистанционного зондирования Земли из космоса. 2016. Т. 13, № 5. C. 79–90. doi: 10.21046/2070-7401-2016-13-5-79-90.
  3. Graftieaux L., Michard M., Grosjean N. Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows // Meas. Sci. Technol. 2001. Vol. 12, no. 9. P. 1422–1429. doi: 10.1088/0957-0233/12/9/307.
  4. Kida S., Miura H. Identification and analysis of vortical structures // European Journal of Mechanics - B/Fluids. 1998. Vol. 17, no. 4. P. 471–488. doi: 10.1016/S0997-7546(98)80005-8.
  5. Menon K., Mittal R. Quantitative analysis of the kinematics and induced aerodynamic loading of individual vortices in vortex-dominated flows: A computation and data-driven approach // Journal of Computational Physics. 2021. Vol. 443. P. 110515. doi: 10.1016/j.jcp.2021.110515.
  6. Волков К. Н., Емельянов В. Н., Тетерина И. В., Яковчук М. С. Визуализация вихревых течений в вычислительной газовой динамике // Журнал вычислительной математики и математической физики. 2017. Т. 57, № 8. С. 1374–1391. doi: 10.7868/S0044466917080154.
  7. Yang K., Wu S., Ghista D. N., Yang D., Wong K. K. L. Automated vortex identification based on Lagrangian averaged vorticity deviation in analysis of blood flow in the atrium from phase contrast MRI // Computer Methods and Programs in Biomedicine. 2022. Vol. 216. P. 106678. doi: 10.1016/j.cmpb.2022.106678.
  8. Soto-Valle R., Cioni S., Bartholomay S., Manolesos M., Nayeri C. N., Bianchini A., Paschereit C. O. Vortex identification methods applied to wind turbine tip vortices // Wind Energy Science. 2022. Vol. 7, no. 2. P. 585–602. doi: 10.5194/wes-7-585-2022.
  9. Zhang Z., Dong S., Jin R., Dong K., Hou L., Wang B. Vortex characteristics of a gas cyclone determined with different vortex identification methods // Powder Technology. 2022. Vol. 404. P. 117370. doi: 10.1016/j.powtec.2022.117370.
  10. Xue Y., Kumar C., Lee S.-K., Giacobello M., Manovski P. Identification and analysis of the meandering of a fin-tip vortex using Proper Orthogonal Decomposition (POD) // International Journal of Heat and Fluid Flow. 2020. Vol. 82. P. 108556. doi: 10.1016/j.ijheatfluidflow.2020. 108556.
  11. Xiong S., He X., Tong Y., Deng Y., Zhu B. Neural vortex method: From finite Lagrangian particles to infinite dimensional Eulerian dynamics // Computers & Fluids. 2023. Vol. 258. P. 105811. doi: 10.1016/j.compfluid.2023.105811.
  12. Говорухин В. Н. Численный анализ динамики распределенных вихревых конфигураций // Журнал вычислительной математики и математической физики. 2016. Т. 56, № 8. C. 1491– 1505. doi: 10.7868/S004446691608007X.
  13. Филимонова А. М. Динамика и адвекция в вихревом паркете // Известия вузов. ПНД. 2019. Т. 27, № 4. С. 71–84. doi: 10.18500/0869-6632-2019-27-4-71-84.
  14. Jeong J., Hussain F. On the identification of a vortex // Journal of Fluid Mechanics. 1995. Vol. 285. P. 69–94. doi: 10.1017/S0022112095000462.
  15. Kolar V. Vortex identification: New requirements and limitations // International Journal of Heat and Fluid Flow. 2007. Vol. 28, no. 4. P. 638–652. doi: 10.1016/j.ijheatfluidflow.2007.03.004.
  16. Giagkiozis I., Fedun V., Scullion E., Jess D. B., Verth G. Vortex flows in the solar atmosphere: Automated identification and statistical analysis // The Astrophysical Journal. 2018. Vol. 869, no. 2. P. 169. doi: 10.3847/1538-4357/aaf797.
  17. Bai X., Cheng H., Ji B., Long X., Qian Z., Peng X. Comparative Study of different vortex identification methods in a tip-leakage cavitating flow // Ocean Engineering. 2020. Vol. 207. P. 107373. doi: 10.1016/j.oceaneng.2020.107373.
  18. Canivete Cuissa J. R., Steiner O. Innovative and automated method for vortex identification // A&A. 2022. Vol. 668. P. A118. doi: 10.1051/0004-6361/202243740.
  19. Sadarjoen I. A., Post F. H. Detection, quantification, and tracking of vortices using streamline geometry // Computers & Graphics. 2000. Vol. 24, no. 3. P. 333–341. doi: 10.1016/S0097- 8493(00)00029-7.
  20. Говорухин В. Н., Филимонова А. М. Анализ структуры плоских вихревых течений и их изменений во времени // Вычислительная механика сплошных сред. 2021. Т. 14, № 4. С. 367–376. doi: 10.7242/1999-6691/2021.14.4.30.
  21. Govorukhin V. N. An extended and improved particle-spectral method for analysis of unsteady inviscid incompressible flows through a channel of finite length // International Journal for Numerical Methods in Fluids. 2023. Vol. 95, no. 4. P. 579–602. doi: 10.1002/fld.5163.
  22. Ahmed S. E., Pawar S., San O., Rasheed A., Tabib M. A nudged hybrid analysis and modeling approach for realtime wake-vortex transport and decay prediction // Computers & Fluids. 2021. Vol. 221. P. 104895. doi: 10.1016/j.compfluid.2021.104895.
  23. Говорухин В. Н. Алгоритм идентификации вихревых пятен на основе моделей точечных вихрей // Известия высших учебных заведений. Северо-Кавказский регион. Серия: Естественные науки. 2020. № 3(207). C. 11–18. doi: 10.18522/1026-2237-2020-3-11-18.
  24. Говорухин В. Н. Перенос пассивных частиц в поле скорости движущегося по плоскости вихревого триполя // Известия вузов. ПНД. 2023. Т. 31, № 3. С. 286–304. doi: 10.18500/0869- 6632-003039.
  25. Velasco Fuentes O. U., van Heijst G. J. F., van Lipzig N. P. M. Unsteady behaviour of a topography-modulated tripole // Journal of Fluid Mechanics. 1996. Vol. 307. P. 11–41. doi: 10.1017/S002211 209600002X.
  26. Geldhauser C., Romito M. The point vortex model for the Euler equation // AIMS Mathematics. 2019. Vol. 4, no. 3. P. 534–575. doi: 10.3934/math.2019.3.534.
  27. Говорухин В. Н. Вариант метода вихрей в ячейках для расчета плоских течений идеальной несжимаемой жидкости // Журнал вычислительной математики и математической физики. 2011. Т. 51, № 6. С. 1133–1147. doi: 10.1134/S096554251106008X.
  28. Говорухин В. Н., Филимонова А. М. Расчет плоских геофизических течений невязкой несжимаемой жидкости бессеточно-спектральным методом // Компьютерные исследования и моделирование. 2019. T. 11, № 3. C. 413–426. doi: 10.20537/2076-7633-2019-11-3-413-426.
  29. Leweke T., Le Dizes S., Williamson C. H. K. Dynamics and instabilities of vortex pairs // Annual Review of Fluid Mechanics. 2016. Vol. 48. P. 507–541. doi: 10.1146/annurev-fluid-122414- 034558.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».