Digital technologies and artificial intelligence for cognitive impairment correction in coronary heart disease depending on the presence of anemia: a review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The development of artificial intelligence–based systems and their implementation in healthcare is a promising direction in contemporary cardiology. It would enable personalized approaches to diagnostics, cognitive enhancement, and prediction of cognitive training outcomes in coronary heart disease—particularly in the presence of anemia. This review analyzes studies addressing adherence to treatment recommendations among cardiology patients, improvement of well-being, reduction of mortality and disability, prolongation of working age, optimization of workload for healthcare professionals, and the transition toward digital medicine using digital cognitive training platforms incorporating artificial intelligence.

Implementation of artificial intelligence systems has the potential to improve treatment outcomes in patients with coronary heart disease and anemia, promote more efficient use of healthcare resources, and contribute to the development of personalized medicine in Russia. Further research will focus on evaluating system effectiveness and expanding its functionality through data integration and monitoring of patients’ physical activity.

About the authors

Tatyana Yu. Kalyuta

Saratov State Medical University named after V.I. Razumovsky

Author for correspondence.
Email: tatianakaluta@yandex.ru
ORCID iD: 0000-0003-3172-0804
SPIN-code: 4982-7861

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Saratov

Angelina M. Poroshina

Saratov State Medical University named after V.I. Razumovsky

Email: poroshina.lina@mail.ru
ORCID iD: 0000-0002-5005-1098
SPIN-code: 1051-9680
Russian Federation, Saratov

Alexander S. Fedonnikov

Saratov State Medical University named after V.I. Razumovsky

Email: fedonnikov@mail.ru
ORCID iD: 0000-0003-0344-4419
SPIN-code: 2248-5246
Russian Federation, Saratov

References

  1. Sabirova EYu, Chicherina EN, Epstein AM. Coronary artery bypass surgery in the treatment of patients with coronary artery disease. The current state of the issue. Medical Newsletter of Vyatka. 2012;(4):49–54. (In Russ.) EDN: QBBOLV
  2. Perk J, Alexanderson K. Swedish Council on Technology Assessment in Health Care (SBU). Chapter 8. Sick leave due to coronary artery disease or stroke. Scand J Public Health Suppl. 2004;63:181–206. doi: 10.1080/14034950410021880
  3. Hällberg V, Kataja M, Tarkka M, et al. Retention of work capacity after coronary artery bypass grafting. A 10-year follow-up study. J Cardiothorac Surg. 2009;4:6. doi: 10.1186/1749-8090-4-6
  4. Karoff M, Röseler S, Lorenz C, Kittel J. [Intensified after-care—a method for improving occupational reintegration after myocardial infarct and/or bypass operation. Z Kardiol. 2000;89(5):423–433. doi: 10.1007/s003920050508 EDN: AUSCZS
  5. Korzeniowska-Kubacka I, Piotrowicz R. Cardiological rehabilitation—a chance of returning to work. Med Pr. 2005;56(4):325–327. (In Polish).
  6. Ardashev VN, Fursov AN, Konev AV, et al. Prognosing of myocardial infarction outcome in arterial hypertension patients. Russian Journal of Cardiology. 2004;9(2):11–15. EDN: IPKHEZ
  7. Efros LA, Samorodskaya IV. Survival and working ability in men after coronary bypass surgery (analysis of registry data). Clinical Medicine (Russian Jornal). 2013;(5):27–31. EDN: PZAGDZ
  8. Yeremina DA, Shchelkova OYu. Comparative analysis of clinical and psychosocial characteristics of patients with different dynamics of cognitive functioning after coronary artery bypass grafting. Experimental Psychology (Russia). 2019;12(3):176–191. doi: 10.17759/exppsy.2019120314 EDN: TQMIPQ
  9. Trukhanova IG, Bulgakova SV, Zakharova NO, et al. Cognitive dysfunctions after coronary artery bypass surgery in older age groups (literature review). Current Problems of Health Care and Medical Statistics. 2019;(1):311–319. doi: 10.24411/2312-2935-2019-10022 EDN: DPFWNB
  10. Goruleva MV, Ganenko OS, Kovaltsova RS, et al. Quality of life and psycho-cognitive condition in patients after coronary artery bypass graft surgery. Russian Journal of Cardiology. 2014;19(9):68–71. doi: 10.15829/1560-4071-2014-9-68-71 EDN: SMHCOB
  11. Rakhimova NAK. Cognitive impairments and neuroprotection during cardiac surgery in conditions of artificial blood circulation [dissertation]. Moscow; 2010. (In Russ.) EDN: QESUDD
  12. Bockeriya LA. Modern trends in the development of cardiovascular surgery. Annaly khirurgii. 2016;21(1-2):10–18. doi: 10.18821/1560-9502-2016-21-110-18 EDN: VXVERD
  13. Bokeria LA, Aronov DM. Russian clinical guidelines coronary artery bypass grafting in patients with ischemic heart disease: rehabilitation and secondary prevention. Cardiosomatics. 2016;(3-4):5–71. EDN: YNTENB
  14. Petrova MM, Prokopenko SV, Eremina OV, et al. Long-term results of cognitive disorders after coronary artery bypass surgery. Fundamental'nye issledovanija. 2015;1(4):814–820. EDN: TWTOVT
  15. Novikova IA, Popov VV. Compliance and quality of life of psychosomatic patients. Medical Psychology in Russia. 2015;(6):9. (In Russ.) EDN: YXXTXF
  16. Avdeeva IV, Proschaev KI, Gubarev YuD, et al. About improvement of multimodal rehabilitation programs for elderly patients with moderate cognitive disorders. Current Problems of Health Care and Medical Statistics. 2020;1:17–29. doi: 10.24411/2312-2935-2020-00002 EDN: UKSWUT
  17. Didenko AI. Countering cyberterrorism. Otechestvennaya yurisprudenciya. 2016;11(13):21–26 (In Russ.) EDN: XAKTMF
  18. Lebedev G, Fomina I, Shaderkin I, et al. Main directions for development of internet technologies in health care (systematic review). Social Aspects of Population Health. 2017;5:10. EDN: ZSVYIN
  19. Karpov OE, Klimenko GS, Lebedev GS. Application of intelligent systems in health care. Sovremennye naukoemkie tehnologii. 2016;(7-1):38–43. EDN: WELOGR
  20. Vladzimirsky V. Telemedicine. Donetsk: OOO "Cifrovaya tipografiya"; 2011. 437 p. (In Russ.) EDN: WFDJMN
  21. Tsvetkova LA, Kuznetsov PP, Kurakova NG. Аssessment of mobile medicine development prospects — on the basis of scientometrical and patent analysis. Medical Doctor and IT. 2014;(4):66–77. EDN: TNXOPZ
  22. Shaderkin IA, Tsoi AA, Sivkov AV, et al. m-Health—the new opportunities of telecommunication technologies in health care. Experimental & Clinical Urology. 2015;(2):142–148. EDN: UGUWXX
  23. Krasnov GS, Davydov IV, Bulgakova SV, et al. Geriatric syndromes that cause difficulties in medical practice: results of an e-survey, proposed solutions, and deprescribing. Sovremennye problemy zdravoohraneniya i medicinskoj statistiki. 2021;(4):151–170. doi: 10.24412/2312-2935-2021-4-157-170 EDN: MUZMIT
  24. Akiyama M, Yoo BK. A Systematic Review of the Economic Evaluation of Telemedicine in Japan. J Prev Med Public Health. 2016;49(4):183–196. doi: 10.3961/jpmph.16.043
  25. Akematsu Y, Tsuji M. Measuring the effect of telecare on medical expenditures without bias using the propensity score matching method. Telemed J E Health. 2012;18(10):743–747. doi: 10.1089/tmj.2012.0019
  26. Raatikainen MJ, Uusimaa P, van Ginneken MM, et al. Remote monitoring of implantable cardioverter defibrillator patients: a safe, time-saving, and cost-effective means for follow-up. Europace. 2008;10(10):1145–1151. doi: 10.1093/europace/eun203
  27. Sayani S, Muzammil M, Saleh K, et al. Addressing cost and time barriers in chronic disease management through telemedicine: an exploratory research in select low- and middle-income countries. Ther Adv Chronic Dis. 2019;10:2040622319891587. doi: 10.1177/2040622319891587
  28. Sirotina A, Kobyakova O, Deev I, et al. Remote health monitoring: global and domestic experience. Social Aspects of Population Health. 2022;68(2):1. doi: 10.21045/2071-5021-2021-68-2-1 EDN: WAJFHN
  29. Avdeeva IV, Proschaev KI, Gubarev YuD. Correction of cognitive and motor disorders in preventive gerontology. Current Problems of Health Care and Medical Statistics. 2019;(2):155–172. doi: 10.24411/2312-2935-2019-10034 EDN: SYQABE
  30. Lysykh EA, Gubarev YuD, Yatsenko EA, et al. Digital technologies in neurogeriatrics as a link of the rehabilitation program of cognitive deficit. Current Problems of Health Care and Medical Statistics. 2020;(4):195–207. doi: 10.24411/2312-2935-2020-00107 EDN: OGSGZD
  31. Lugovkina T, Gorshkov S. Information technologies to improve quality of clinical practice. Analytical review. Social Aspects of Population Health. 2020;66(4):12. doi: 10.21045/2071-5021-2020-66-4-12 EDN: UVAGKO
  32. Badin YuV, Fomin IV, Belenkov YuN, et al. EPOKHA-AG 1998-2017: dynamics of prevalence, awareness of arterial hypertension, coverage therapy and effective control of blood pressure in the European part of the Russian Federation. Cardiology. 2018;59(1):34–42. (In Russ.) EDN: YUJIAP
  33. Avdeeva IV, Proschaev KI, Gubarev YuD, et al. Features of adherence to the combined rehabilitation program among patients with cognitive impairments. Current Problems of Health Care and Medical Statistics. 2019;(4):139–150.
  34. Avedisova AS. Problems of long–term therapy of chronic diseases: compliance—refusal of therapy—motivation for treatment. Jeffektivnaja farmakoterapija. 2012;(48):64–69. (In Russ.) EDN: SMNPCT
  35. Kurmyshev MV, Avdeeva IV, Voronina EA, et al. Scientific justification for approaches to rehabilitation programs in cognitive asthenia. Current Problems of Health Care and Medical Statistics. 2020;4:171–184. doi: 10.24411/2312-2935-2020-00105 EDN: CPDDUC

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).