Oxidative Damage and Antioxidant Response of Acinetobacter calcoaceticus, Pseudomonas putida and Rhodococcus erythropolis Bacteria during Antibiotic Treatment

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this work, oxidative damage and the level of antioxidant response in Acinetobacter calcoaceticus, Pseudomonas putida, and Rhodococcus erythropolis cells under the influence of such antibiotics as ampicillin, azithromycin, rifampicin, tetracycline, and ceftriaxone were studied. The level of protein carboxylation and lipid peroxidation (LPO), as well as the activity of superoxide dismutase (SOD), catalase, glutathione reductase (GR), and the level of glutathione 3 and 6 hours after antibiotic treatment of bacteria were assessed. It is observed that SOD induction occurs earlier and is more active than catalase induction. In A. calcoaceticus, SOD is induced together with protein carboxylation and probably protects them from oxidative damage, while catalase induction correlates with LPO. A positive correlation is also noted between catalase activity and glutathione content in R. erythropolis. Catalase activity increases insignificantly and even decreases under the studied antibiotics influence, which is associated with an insignificant level of lipid peroxidation in most prokaryotes. On the other hand, low catalase activity can contribute to genome destabilization as a result of oxidative stress and enhance the adaptive evolution of bacteria.

Texto integral

Acesso é fechado

Sobre autores

I. Sazykin

Southern Federal University

Email: samara@sfedu.ru
Rússia, Rostov-on-Don, 344090

A. Plotnikov

Southern Federal University

Email: samara@sfedu.ru
Rússia, Rostov-on-Don, 344090

O. Lanovaya

Southern Federal University

Email: samara@sfedu.ru
Rússia, Rostov-on-Don, 344090

K. Onasenko

Southern Federal University

Email: samara@sfedu.ru
Rússia, Rostov-on-Don, 344090

A. Polinichenko

Southern Federal University

Email: samara@sfedu.ru
Rússia, Rostov-on-Don, 344090

A. Mezga

Southern Federal University

Email: samara@sfedu.ru
Rússia, Rostov-on-Don, 344090

T. Azhogina

Southern Federal University

Email: samara@sfedu.ru
Rússia, Rostov-on-Don, 344090

A. Litsevich

Southern Federal University

Email: samara@sfedu.ru
Rússia, Rostov-on-Don, 344090

M. Sazykina

Southern Federal University

Autor responsável pela correspondência
Email: samara@sfedu.ru
Rússia, Rostov-on-Don, 344090

Bibliografia

  1. Yoneyama H., Katsumata R. // Biosci. Biotechnol. Biochem. 2006. V. 70. № 5. P. 1060–1075.
  2. Фурман Ю.В., Артюшкова Е. Б., Аниканов А. В. // Актуальные проблемы социально-гуманитарного и научно-технического знания. 2019. № 1. С. 1–3.
  3. Пескин А.В. // Биохимия. 1997. Т. 62. № 12. С. 1571–1578.
  4. Imlay J.A. // Cur. Opin. Microbiol. 2015. V. 24. P. 124–131.
  5. Sazykin I.S., Sazykina M. A. // Gene. 2023. V. 857. P. 147170. https://doi.org/10.1016/j.gene.2023.147170
  6. Goyal A. // iScience. 2022. V. 25. № 5. P. 104312.
  7. Levine R.L., Garland D., Oliver C. N., Amici A., Climent I., Lenz A. G. et al. // Methods Enzymol. 1990. V. 186. P. 464–478.
  8. Дубинина Е.Е., Бурмистров С. О., Ходов Д. А., Поротов Г. Е. // Вопросы медицинской химии. 1995. Т. 41. № 1. С. 24–26.
  9. Стальная И.Д., Гаришвили Т. Г. // Современные методы в биохимии. 1977. Т. 2. № 3. С. 66–68.
  10. Королюк М. А., Иванова Л. К., Майорова И. Г., Токарева В. А. //Лабораторное дело. 1988. № 4. С. 44–47.
  11. Сирота Т.В. // Вопросы медицинской химии. 1999. Т. 45. № 3. С. 263–272.
  12. Ellman G.L. // Arch. Biochem. Biophys. 1959. V. 82. № 1. P. 70–77.
  13. Юсупова Л.Б. // Лабораторное дело. 1989. Т. 4. № 19–21. С. 13.
  14. Wanarska E., Mielko K. A., Maliszewska I., Młynarz P. // Sci. Rep. 2022. V. 12. № 1. P. 1913.
  15. Shin B., Park C., Park W. //Appl. Microbiol. Biotechnol. 2020. Т. 104. С. 1423–1435.
  16. Belenky P., Ye J. D., Porter C. B., Cohen N. R., Lobritz M. A., Ferrante T. et al. // Cell Rep. 2015. V. 13. № 5. P. 968–980.
  17. Brogden R.N., Ward A. // Drugs. 1988. V. 35. № 6. P. 604–645.
  18. Постникова Л.Б., Соодаева С. К., Климанов И. А., Кубышева Н. И., Афиногенов К. И., Глухова М. В., Никитина Л. Ю. // Пульмонология. 2017. V. 27. № 5. P. 664–671.
  19. Куликова Н. А. // Международный студенческий научный вестник. 2017. № 4–5. С. 614–615.
  20. Weimer A., Kohlstedt M., Volke D. C., Nikel P. I., Wittmann C. // Appl. Microbiol. Biotechnol. 2020. V. 104. P. 7745–7766.S
  21. Nikel P. I., Fuhrer T., Chavarría M., Sánchez-Pascuala A., Sauer U., de Lorenzo V. // ISME J. 2021. V. 15. № 6. P. 1751–1766.
  22. Van Acker H., Gielis J., Acke M., Cools F., Cos P., Coenye T. // PloS One. 2016. V. 11. № 7. e0159837. https://doi.org/10.1371/journal.pone.0159837
  23. Pátek M., Grulich M., Nešvera J. // Biotechnol. Adv. 2021. V. 53. P. 107698.
  24. Urbano S. B., Di Capua C., Cortez N., Farías M. E., Alvarez H. M. // Extremophiles. 2014. V. 18. P. 375–384.
  25. Meireles A., Faia S., Giaouris E., Simões M. // Biofouling. 2018. V. 34. № 10. P. 1150–1160.
  26. Ren X., Zou L., Holmgren A. // Curr. Med. Chem. 2020. V. 27. № 12. P. 1922–1939. https://doi.org/10.2174/0929867326666191007163654
  27. Cleeland R., Squires E. // Am. J. Med. 1984. V. 77. (4C). P. 3–11.
  28. Mourenza Á., Gil J. A., Mateos L. M., Letek M. // Antioxidants. 2020. V. 9. № 5. P. 361.
  29. Aguilera J., Rautenberger R. // Oxidative Stress in Aquatic Ecosystems. 2011. P. 58–71. https://doi.org/10.1002/9781444345988.ch4
  30. Martins D., McKay G., Sampathkumar G., Khakimova M., English A. M., Nguyen D. // PNAS. 2018. V. 115. № 39. P. 9797–9802.
  31. Heindorf M., Kadari M., Heider C., Skiebe E., Wilharm G. // PloS One. 2014. V. 9. № 7. P. e101033.
  32. Retsema J., Girard A., Schelkly W., Manousos M., Anderson M., Bright G. et al. // Antimicrob. Agents Сhemother. 1987. V. 31. № 12. P. 1939–1947.
  33. Mirzaei R., Mesdaghinia A., Hoseini S. S., Yunesian M. // Chemosphere. 2019. V. 221. P. 55–66.
  34. Ramanathan S., Arunachalam K., Chandran S., Selvaraj R., Shunmugiah K. P., Arumugam V. R. // J. Аppl. Microbiol. 2018. V. 125. № 1. P. 56–71. https://doi.org/10.1111/jam.13741.
  35. Zhang Y.N., Duan K. M. // Sci. China C Life Sci. 2009. V. 52. № 6. P. 501–505.
  36. Daschner F.D., Frank U. // Infection. 1989. V. 17. № 4. P. 272–274.
  37. Gnann Jr J. W., Goetter W. E., Elliott A. M., Cobbs C. G. // Antimicrob. Agents Chemother // 1982. V. 22. № 1. P. 1–9.
  38. El-Barbary M.I., Hal A. M. // J. Aquac. Res. Development. 2017. V. 8. № 7. P. 1–7. https://doi.org/10.4172/2155-9546.1000499
  39. Konikkat S., Scribner M. R., Eutsey R., Hiller N. L., Cooper V. S., McManus J. // PLoS genetics. 2021. V. 17. № 7: e1009634. https://doi.org/10.1371/journal.pgen.1009634
  40. Elbehiry A., Marzouk E., Aldubaib M., Moussa I., Abalkhail A., Ibrahem M. et al. // AMB Express. 2022. V. 12. № 1. P. 53. https://doi.org/10.1186/s13568-022-01390-1
  41. Plaggenborg R., Overhage J., Loos A., Archer J. A. C., Lessard P., Sinskey A. J. et al. // Appl. Microbiol. Biotechnol. 2006. V. 72. № 4. P. 745–755.
  42. Stancu M. M. // J. Environ. Sci. (Shina) 2014. V. 26. № 10. P. 2065–2075. https://doi.org/10.1016/j.jes.2014.08.006
  43. Yamshchikov A.V., Schuetz A., Lyon G. M. // Lancet Infecti. Dis. 2010. V. 10. № 5. P. 350–359.
  44. McNeil M.M., Brown J. M. // Eur. J. Epidemiol. 1992. V. 8. № 3. P. 437–443.
  45. Asoh N., Watanabe H., Fines-Guyon M., Watanabe K., Oishi K., Kositsakulchai W. et al. // J. Clin. Microbiol. 2003. V. 41. № 6. P. 2337–2340.
  46. Vaubourgeix J., Lin G., Dhar N., Chenouard N., Jiang X., Botella H. et al. // Cell Host & Microbe. 2015. V. 17. № 2. P. 178–190.
  47. Nyström T. // EMBO J. 2005. V. 24. № 7. P. 1311–1317.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The content of carbonyl groups (nM phenylhydrazones/mg protein) in the proteins of the studied bacterial strains after treatment with antibiotics: 1 - control; 2 - azithromycin; 3 - ampicillin; 4 - rifampicin; 5 - tetracycline; 6 - ceftriaxone; a - 3 h, b - 6 h. * The differences are statistically significant at p < 0.05.

Baixar (179KB)
3. Fig. 2. Lipid peroxidation (MDA, nM/ml) in the studied bacterial strains after treatment with antibiotics: 1 - control; 2 - azithromycin; 3 - ampicillin; 4 - rifampicin; 5 - tetracycline; 6 - ceftriaxone; a - 3 h, b - 6 h. * The differences are statistically significant at p < 0.05.

Baixar (178KB)
4. Fig. 3. SOD activity (U/mg protein × min) under the influence of antibiotics on the studied bacterial strains: 1 — control; 2 — azithromycin; 3 — ampicillin; 4 — rifampicin; 5 — tetracycline; 6 — ceftriaxone; a — 3 h, b — 6 h. * Differences are statistically significant at p < 0.05.

Baixar (149KB)
5. Fig. 4. Catalase activity (nM H2O2/mg protein) under the influence of antibiotics on the studied bacterial strains: 1 — control; 2 — azithromycin; 3 — ampicillin; 4 — rifampicin; 5 — tetracycline; 6 — ceftriaxone; a — 3 h, b — 6 h. * Differences are statistically significant at p < 0.05.

Baixar (184KB)
6. Fig. 5. Glutathione concentration (μM GSH/g protein) upon exposure to antibiotics on the studied bacterial strains: 1 — control; 2 — azithromycin; 3 — ampicillin; 4 — rifampicin; 5 — tetracycline; 6 — ceftriaxone; a — 3 h, b — 6 h. * Differences are statistically significant at p < 0.05.

Baixar (143KB)
7. Fig. 6. Glutathione reductase activity (IU GR/g protein) upon exposure to antibiotics on the studied bacterial strains: 1 — control, without antibiotic; 2 — azithromycin; 3 — ampicillin; 4 — rifampicin; 5 — tetracycline; 6 — ceftriaxone; a — 3 h, b — 6 h. * Differences are statistically significant at p < 0.05.

Baixar (186KB)
8. Fig. 7. Correlation between the activity of antioxidant enzymes and oxidative damage to bacterial cell components in the studied strains (significant values ​​are highlighted in color, p < 0.05). A — SOD, B — catalase, C — GSH, D — GR, D — protein carboxylation, E — LPO.

Baixar (111KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».