Antimicrobial Potential Micromycete Emericellopsis sp. E102 and the Influence of Cultivation Conditions on the Biosynthesis of Antibiotics

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In recent decades, the interest in Emericellopsis genus as producers of bioactive molecules has increased significantly due to the isolation of new compounds with potential pharmaceutical applications. Evaluation of the spectrum of antibiotic activity has allowed us to choose a promising producer of new antibacterial compound, Emericellopsis sp. E102 strain derived from saline soils. Strain E102, based on molecular and phylogenetic constructions, is allocated to a separate clade within the marine clade of Emericellopsis and is presumably a new species. The ethyl acetate extract of E102 strain demonstrated significant efficacy in a concentration of 1.000 μ g/mL, resulting in inhibition zones measuring 20.3– 30.0 mm against Escherichia coli ATCC 25922; Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 700603, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212. The high-performance liquid chromatography analysis identified compound with monoisotopic mass of the substance 724.5 g/mol. Using the Chemcalc.org service, the most probable gross formulas of the required component were determined. Based on the presented calculations, there is a high probability that the substance has a sterane framework.

Sobre autores

V. Sokolov

Gause Institute of New Antibiotics

Moscow, 119021 Russia

I. Mironov

Gause Institute of New Antibiotics

Moscow, 119021 Russia

A. Simonov

Gause Institute of New Antibiotics

Moscow, 119021 Russia

I. Levshin

Gause Institute of New Antibiotics

Moscow, 119021 Russia

M. Georgieva

Gause Institute of New Antibiotics; Moscow State University

Moscow, 119021 Russia; Moscow, 119234 Russia

V. Sadykova

Gause Institute of New Antibiotics

Email: sadykova_09@mail.ru
Moscow, 119021 Russia

Bibliografia

  1. Van Beyma Thoe Kingma F.H. // Antonie van Leeuwenhoek. 1939. V. 6. P. 263–290. https://doi.org/10.1007/BF02146191
  2. Hou L.W., Giraldo A., Groenewald J.Z., Rämä T., Summerbell R.C., Huang G.Z. et al. // Stud. Mycol. 2023. V. 105. P. 23–203. https://doi.org/10.3114/sim.2023.105.02
  3. Phurbu D., Huang J.-E., Song S., Ni Z., Zhou X., Li S. et al. // Mycology. 2024. p. 1–20. https://doi.org/10.1080/21501203.2024.2333300
  4. Zuccaro A., Summerbell R.C., Gams W., Schroers H.-J., Mitchell J.I. // Stud. Mycol. 2004. V. 50. P. 283–297.
  5. Grum-Grzhimaylo A.A., Georgieva M.L., Debets A.J.M., Bilanenko E.N. // IMA Fungus. 2013. V. 4 P. 213–228. https://doi.org/10.5598/imafungus.2013.04.02.07
  6. Grosklags J.H., Swift M.E. // Mycologia. 1957. V. 49. P. 305 –317. https://doi.org/10.1080/00275514.1957.12024646
  7. Bode H.B., Bethe B., Höfs R., Zeeck A . // ChemBioChem. 2002. V. 3. P. 619–627. https :// doi . org /10.1002/1439-7633(20020703)3:7<619:: AID - CBIC 619>3.0. CO ;2-9
  8. Katoh K., Standley D.M. // Mol. Biol. Evol. 2013. V. 30. P. 772–780. https://doi.org /10.1093/molbev/mst010
  9. Tamura K., Stecher G., Kumar S. // Mol. Biol. Evol. 2021. V. 38. P. 3022– 3027. https://doi.org/10.1093/molbev/msab120
  10. Minh B.Q., Schmidt H.A., Chernomor O. , Schrempf D., Woodhams M.D., Von Haeseler A. et al. // Mol. Biol. Evol. 2020. V. 37. P. 1530–1534. https://doi. org/10.1093/molbev/msaa015
  11. Simmons M.P., Ochoterena H. // Syst. Biol. 2000. V. 49. P. 369–381. https://doi.org/10.1093/sysbio/49.2.369
  12. Müller К . // Appl. Bioinformatics. 2005. V. 4. P. 65–69. https://doi.org/10.2165/00822942-200504010-00008
  13. Altekar G. , Dwarkadas S., Huelsenbeck J.P., Ronqu- ist F. // Bioinformatics. 2004. V. 20. P. 407–415. https://doi.org/ 10.1093/bioinformatics/btg427
  14. Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A. , Höhna S. et al. // Syst. Biol. 2012. V. 61. P. 539–542. https://doi.org/10.1093/ sysbio/sys029
  15. Ayres D.L., Darling A., Zwickl D.J., Beerli P., Hol- der M.T., Lewis P.O. et al. // Syst. Biol. 2012. V. 61. P. 170–173. https://doi.org/10.1093/sysbio/syr100
  16. Paradis E., Schliep K. // Bioinformatics. 2019. V. 35. P. 526–528. https://doi.org/10.1093/bioinformatics/bty 633
  17. Wang L.-G., Lam T.T.-Y., Xu S., Dai Z., Zhou L., Feng T. et al. // Mol. Biol. Evol. 2020. V. 37. P. 599 –603. https://doi.org/10.1093/molbev/msz240
  18. Yu G. Data Integration, Manipulation and Visualization of Phylogenetic Trees. N.Y.: Chapman and Hall CRC, 2022. 276 p. https://doi.org/ 10.1201/9781003279242
  19. R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  20. Rogozhin E., Sadykova V., Baranova A., Vasilchenko A., Lushpa V., Mineev K. et al // Molecules. 2018. V. 23. № 11. P. 2785–2797. https://doi.org/10.3390/molecules23112785
  21. Kuvarina A.E., Gavryushina I.A., Kulko A.B., Iva- nov I.A., Rogozhin E.A., Georgieva M.L. et al. // J. Fungi. 2021. V. 7. № 2. P. 153–170. https://doi.org/10.3390/jof7020153
  22. Kuvarina A.E., Gavryushina I.A., Sykonnikov M.A., Efimenko T.A., Markelova N.N., Bilanenko E.N. et al // Molecules. 2022. V. 27. № 5. P. 1736–1752. https://doi.org/10.3390/molecules27051736
  23. 23 . Blunt J.W., Carroll A.R., Copp B.R., Davis R.A., Key-zers R.A., Prinsep M.R. // Nat. Prod. Rep. 2018. V. 35. P. 8 –53. https://doi.org/10.1039/C7NP00052A
  24. Hagestad O.C., Hou L., Andersen J.H., Hansen E.H., Altermark B., Li C. et al. // IMA Fungus. 2021. V. 12 № 21. P. 1–23. https://doi.org/10.1186/s43008-021-00072-0
  25. Gonçalves M.F.M., Hilá rio S., Van De Peer Y., Este- ves A.C., Alves A. // J. Fungi. 2021. V. 8. № 31. P. 1–20. https://doi.org/10.3390/jof8010031
  26. Inostroza A., Lara L., Paz C., Perez A., Galleguil- los F., Hernandez V. et al. // Nat. Prod. Res. 2018. V. 32. P. 1361–1364. https://doi.org/10.1080/14786419.2017.1344655
  27. Cole M., Rolinson G.N. // Proc. R. Soc. Lond. B Biol. Sci. 1961. V. 154. P. 490–497. https://doi.org/10.1098/rspb.1961.0046
  28. Perazzoli G., De Los Reyes C., Pinedo-Rivilla C., Durán-Patr ón R., Aleu J., Cabeza L. et al. // J. Mar. Sci. Eng. 2023. V. 11. № 10 P. 2–12. https://doi.org/10.3390/jmse11102024
  29. 2 9. Magot F., Van Soen G., Buedenbender L., Li F., Soltwe- del T., Grauso L. et al. // Mar. Drugs. 2023. V. 21. № 95. P. 2–23. https://doi.org/10.3390/md21020095
  30. Utermann C., Echelmeyer V.A., Blümel M., Tasde- mir D. // Microorganisms. 2020. V. 8 № 11. P. 1732–1755. https://doi.org/10.3390/microorganisms8111732
  31. Georgieva M.L., Bilanenko E.N. , Ponizovskaya V.B., Ko kaeva L.Y., Georgiev A.A., Efimenko T.A. et al. // Microorganisms. 2023. V. 11. № 10. P. 2587–2618. https://doi.org/10.3390/microorganisms11102587
  32. Virués-Segovia J.R., Millán C., Pinedo C., González-Rodríguez V.E., Papaspyrou S., Zorrilla D. et al. // Mar. Drugs. 2023. V. 21. № 12. P. 634–649. https://doi.org/10.3390/md21120634
  33. Virués-Segovia J.R., Pinedo C., Zorrilla D., Sánchez-Márquez J., Sánchez P., Ramos M.C. et al. // Front. Mar. Sci. 2024. V. 11. P . 1–13. https://doi.org/10.3389/fmars.2024.1386175

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).