СИНТЕЗ И АНТИБАКТЕРИАЛЬНАЯ АКТИВНОСТЬ НАНОЧАСТИЦ СЕРЕБРА, СТАБИЛИЗИРОВАННЫХ ЛИПОПЕПТИДАМИ И ГЛИКОЛИПИДАМИ, ПРОДУЦИРУЕМЫМИ Bacillus amyloliquefaciens И Pseudomonas fluorescens

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе изучены коллоидно-химические и антибактериальные свойства водных дисперсий наночастиц серебра, стабилизированных сурфактином и рамнолипидами, выделенными из бактерий B. amyloliquefaciens и P. fluorescens. Выделенные биосурфактанты идентифицировали методами тонкослойной хроматографии и ИК-Фурье спектрометрии. С помощью методов УФ-видимой спектрофотометрии, просвечивающей электронной микроскопии и динамического рассеяния света исследованы коллоидно-химические характеристики полученных дисперсий. Найдены оптимальные соотношения реагентов, при которых используемые биосурфактанты являются эффективными стабилизаторами дисперсий наночастиц серебра и обеспечивают их агрегативную устойчивость на протяжении не менее двух месяцев. Обнаружено, что исследованные дисперсии обладали антибактериальной активностью в отношении грамположительных B. subtilis и грамотрицательных P. aeruginosa и E. coli. Произведена сравнительная оценка антибактериальной активности наночастиц серебра стабилизированных биосурфактантами и традиционных содержащих серебро препаратов таких, как раствор нитрата серебра и дисперсия наночастиц серебра, стабилизированных цитратом. Наибольшую активность, сопоставимую с действием раствора нитрата серебра, показали дисперсии, стабилизированные сурфактином, что связано с их высокой коллоидной устойчивостью. Кроме того, обнаружена высокая антибактериальная активность дисперсий наночастиц серебра, стабилизированных биосурфактантами, выделенными из бактерий Bacillus и Pseudomonas, в отношении штаммов другого рода. Дано объяснение наблюдаемого феномена и предложены перспективы его приложения в медицине.

Об авторах

А. Г. Хина

Московский государственный университет им. М.В. Ломоносова, химический факультет; Московский государственный технический университет им. Н.Э. Баумана

Email: alex_khina@inbox.ru
Москва, 119991 Россия; Москва, 105005 Россия

А. С. Гордеев

Казанский (Приволжский) федеральный университет, Институт экологии, биотехнологии и природопользования

Казань, 420008 Россия

Л. Р. Бикташева

Казанский (Приволжский) федеральный университет, Институт экологии, биотехнологии и природопользования

Казань, 420008 Россия

Д. М. Горбунов

Московский государственный университет им. М.В. Ломоносова, химический факультет

Москва, 119991 Россия

П. А. Курынцева

Казанский (Приволжский) федеральный университет, Институт экологии, биотехнологии и природопользования

Казань, 420008 Россия

Г. В. Лисичкин

Московский государственный университет им. М.В. Ломоносова, химический факультет

Москва, 119991 Россия

Ю. А. Крутяков

Московский государственный университет им. М.В. Ломоносова, химический факультет; Национальный исследовательский центр “Курчатовский институт”

Email: nrcki@nrcki.ru
Москва, 119991 Россия; Москва, 123182 Россия

Список литературы

  1. Varela M.F., Stephen J., Lekshmi M., Ojha M., Wenzez N., Sanford L.M., Hernandez A.J. et al. // Antibiotics. 2021. V. 10. https://doi.org/10.3390/antibiotics10050593
  2. Butler M.S., Gigante V., Sati H., Paulin S., Al-Sulaiman L., Rex J.H. et al. // Antimicrob. Agents Chemother. 2022. V. 66. https://doi.org/10.1128/aac.01991-21
  3. Stachelek M., Zalewska M., Kawecka-Grochocka E., Sakowski T., Bagnicka E. // Annals of Animal Science. 2021. V. 21. P. 63–87. https://doi.org/10.2478/aoas-2020-0098
  4. Vila J., Moreno-Morales J., Ballesté-Delpierre C. // Clin. Microb. Infect. 2020. V. 26. P. 596–603. https://doi.org/10.1016/j.cmi.2019.09.015
  5. Hamad A., Khashan K.S., Hadi A. // J. Inorg. Organomet. Polym. Mater. 2020. V. 30. P. 4811–4828. https://doi.org/10.1007/s10904-020-01744-x
  6. Waszczykowska A., Żyro D., Ochocki J., Jurowski P. // Biomedicines. 2021. V. 9. P. 210. https://doi.org/10.3390/biomedicines9020210
  7. Sekito T., Sadahira T., Watanabe T., Maruyama Y., Watanabe T., Iwata T. et al. // World Acad. Sci J. 2022. V. 4. P. 1–6. https://doi.org/10.3892/wasj.2022.141
  8. Ozdal M., Gurkok S. // ADMET DMPK. 2022. V. 10. P. 115–129. https://doi.org/10.5599/admet.1172
  9. Krutyakov Y., Klimov A., Violin B., Kuzmin V., Ryzhikh V., Gusev A. et al. // Eur. J. Nanomed. 2016. V. 8. P. 185–194. https://doi.org/10.1515/ejnm-2016-0018
  10. Yin I.X., Zhang J., Zhao I.S., Mei M.L., Li Q., Chu C.H. // Int. J. Nanomedicine. 2020. V. 15. P. 2555–2562. https://doi.org/10.2147/IJN.S246764
  11. Dos Santos C.A., Seckler M.M., Ingle A.P., Gupta I., Galdiero S., Galdiero M. et al. // J. Pharm. Sci. 2014. V. 103. P. 1931–1944. https://doi.org/10.1002/jps.24001
  12. Cambier S., Røgeberg M., Georgantzopoulou A., Serchi T., Karlsson C., Verhaegen S. et al. // Sci. Total Environ. 2018. V. 610. P. 972–982. https://doi.org/10.1016/j.scitotenv.2017.08.115
  13. Abramenko N., Semenova M., Khina A., Zherebin P., Krutyakov Y., Krysanov E., Kustov L. // Nanomaterials. 2022. V. 12. https://doi.org/10.3390/nano12224003
  14. Khina A.G., Krutyakov Y.A. // Appl. Biochem. Microbiol. 2021. V. 57. P. 683–693. https://doi.org/10.1134/S0003683821060053
  15. Salleh A., Naomi R., Utami N.D., Mohammad A.W., Mahmoudi E., Mustafa N., Fauzi M.B. // Nanomaterials. 2020. V. 10. https://doi.org/10.3390/nano10081566
  16. Liau S.Y., Read D.C., Pugh W.J., Furr J.R., Russell A.D. // Lett. Appl. Microbiol. 1997. V. 25. P. 279–283. https://doi.org/10.1046/j.1472-765X.1997.00219.x
  17. Gordon O., Vig Slenters T., Brunetto P.S., Villaruz A.E., Sturdevant D.E., Otto M. et al. // Antimicrob. Agents Chemother. 2010. V. 54. P. 4208–4218. https://doi.org/10.1128/aac.01830-09
  18. Dibrov P., Dzioba J., Gosink K.K., Häse C.C. // Antimicrob. Agents Chemother. 2002. V. 46. P. 2668–2670. https://doi.org/10.1128/aac.46.8.2668-2670.2002
  19. Yamanaka M., Hara K., Kudo J. // Appl. Environ. Microbiol. 2005. V. 71. P. 7589–7593. https://doi.org/10.1128/AEM.71.11.7589-7593.2005
  20. Freeland J., Khadka P., Wang Y. // Phys. Rev. E. 2018. V. 98. https://doi.org/10.1103/PhysRevE.98.062403
  21. Adeyemi O.S., Shittu E.O., Akpor O.B., Rotimi D., Batiha G.E. // EXCLI J. 2020. V. 19. P. 492. http://dx.doi.org/10.17179/excli2020-1244
  22. Cabiscol Catalā E., Tamarit Sumalla J., Ros Salvador J. // Int. Microbiol. 2000. V. 3. № 1. P. 3–8. https://doi.org/10.2436/IM.V3I1.9235
  23. McQuillan J.S., Shaw A.M. // Nanotoxicology. 2014. V. 8. P. 177–184. https://doi.org/10.3109/17435390.2013.870243
  24. Krutyakov Y.A., Khina A.G. // Appl. Biochem. Microbiol. 2022. V. 58. P. 493–506. https://doi.org/10.1134/S0003683822050106
  25. Krutyakov Y.A., Kudrinskiy A.A., Olenin A.Y., Lisichkin G.V. // Russian Chemical Reviews. 2008. V. 77. P. 233. https://doi.org/10.1070/RC2008v077n03ABEH003751
  26. Kvítek L., Panáček A., Soukupová J., Kolář M., Večeřová R., Prucek R. et al. // J. Phys. Chem. C. 2008. V. 112. P. 5825–5834. https://doi.org/10.1021/jp711616v
  27. Gibała A., Żeliszewska P., Gosiewski T., Krawczyk A., Duraczyńska D., Szaleniec J. et al. // Biomolecules. 2021. V. 11. P. 1481. https://doi.org/10.3390/biom11101481
  28. Vertelov G.K., Krutyakov Y.A., Efremenkova O. V, Olenin A.Y., Lisichkin G.V // Nanotechnology. 2008. V. 19. https://doi.org/10.1088/0957-4484/19/35/355707
  29. Markande A.R., Patel D., Varjani S.A. // Bioresour. Technol. 2021. V. 330. https://doi.org/10.1016/j.biortech.2021.124963
  30. Puyol McKenna P., Naughton P.J., Dooley J.S.G., Ternan N.G., Lemoine P., Banat I.M. // Pharmaceuticals. 2024. V. 17. P. 138. https://doi.org/10.3390/ph17010138
  31. Chrzanowski Ł., Ławniczak Ł., Czaczyk K. // World J. Microbiol. Biotechnol. 2012. V. 28. P. 401–419. https://doi.org/10.1007/s11274-011-0854-8
  32. Andrić S., Meyer T., Rigolet A., Prigent-Combaret C., Höfte M., Balleux G. et al. // Microbiol. Spectr. 2021. V. 9. https://doi.org/10.1128/spectrum.02038-21
  33. Kumar C.G., Mamidyala S.K., Das B., Sridhar B., Devi G.S., Karuna M.S. // J. Microbiol. Biotechnol. 2010. V. 20. P. 1061–1068. http://doi.org/10.4014/jmb.1001.01018
  34. Salazar-Bryam A.M., Yoshimura I., Santos L.P., Moura C.C., Santos C.C., Silva V.L., et al. // Colloids Surf. B. Biointerfaces. 2021. V. 205. https://doi.org/10.1016/j.colsurfb.2021.111883
  35. Reddy A.S., Chen C. Y., Baker S.C., Chen C. C., Jean J. S., Fan C. W. et al. // Mater. Lett. 2009. V. 63. P. 1227–1230. https://doi.org/10.1016/j.matlet.2009.02.028
  36. Rangarajan V., Dhanarajan G., Dey P., Chattopadhya D., Sen R. // Appl. Nanosci. 2018. V. 8. P. 1809–1821. https://doi.org/10.1007/s13204-018-0852-3
  37. Bezza F.A., Tichapondwa S.M., Chirwa E.M.N. // J. Hazard Mater. 2020. V. 393. https://doi.org/10.1016/j.jhazmat.2020.122319
  38. Joanna C., Marcin L., Ewa K., Grażyna P. A // Ecotoxicology. 2018. V. 27. P. 352–359. https://doi.org/10.1007/s10646-018-1899-3
  39. Elnosary M., Aboelmagd H., Sofy M.R., Sofy A. // Egypt J. Chem. 2023. V. 66. P. 209–223. http://doi.org/10.21608/ejchem.2022.159976.6894
  40. Vasileva-Tonkova E., Sotirova A., Galabova D. // Curr. Microbiol. 2011. V. 62. P. 427–433. http://doi.org/10.1007/s00284-010-9725-z
  41. EL-Amine Bendaha M., Mebrek S., Naimi M., Tifrit A., Belaouni H.A. // Open Access Sci. Rep. 2012. V. 2. http://doi.org/10.4172/scientificreports.544
  42. Schalchli H., Lamilla C., Rubilar O., Briceño G., Gallardo F., Durán N. et al. // J. Environ. Chem. Eng. 2023. V. 11. https://doi.org/10.1016/j.jece.2023.111572
  43. Zhang F., Huo K., Song X., Quan Y., Wang S., Zhang Z. et al. // Microb. Cell Fact. 2020. V. 19. P. 1–13. https://doi.org/10.1186/s12934-020-01485-z
  44. Sarker S.D., Nahar L., Kumarasamy Y. // Methods. 2007. V. 42. № 4. P. 321-324. https://doi.org/10.1016/j.ymeth.2007.01.006
  45. Volk H., Hendry P. Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. / Ed. S. Y. Lee. Cham, Switzerland: Springer International Publishing AG, 2017. P. 1–16. https://doi.org/10.1007/978-3-319-31421-1_202-1
  46. Gordadze G.N., Tikhomirov V.I. // Pet. Chem. 2007. V. 47. № 6. P. 389–398.
  47. Seo J., Hoffmann W., Warnke S., Huang X., Gewinner S., Schöllkopf W. et al. // Nat. Chem. 2017. V. 9. P. 39–44. https://doi.org/10.1038/nchem.2615
  48. Janek T., Gudiña E.J., Połomska X., Biniarz P., Jama D., Rodrigues L.R. et al.// Molecules. 2021. V. 26. https://doi.org/10.3390/molecules26123488
  49. Deepika K.V., Raghuram M., Bramhachari P.V. // Afr. J. Microbiol. Res. 2017. V. 11. P. 218–231. http://doi.org/10.5897/AJMR2015.7881
  50. Nayarisseri A., Singh P., Singh S.K. // Bioinformation. 2018. V. 14. № 6. P. 304–314. http://doi.org/10.6026/97320630014304
  51. Shah M.U.H., Sivapragasam M., Moniruzzamana M., Yusup S.B. // Procedia Engineering. 2016. V. 148. P. 494–500. http://doi.org/10.1016/j.proeng.2016.06.538
  52. Dengle-Pulate V., Chandorkar P., Bhagwat S., Prabhune A.A. // J. Surfactants Deterg. 2014. V. 17. P. 543–552. https://doi.org/10.1007/s11743-013-1495-8
  53. Oluwaseun A.C., Kola O.J., Mishra P., Singh J.R., Singh A.K., Cameotra S.S., Micheal B.O. // Sustain. Chem. Pharm. 2017. V. 6. P. 26–36. https://doi.org/10.1016/j.scp.2017.07.001
  54. Huynh K.A., Chen K.L. // Environ. Sci. Technol. 2011. V. 45. P. 5564–5571. https://doi.org/10.1021/es200157h
  55. Lyng M., Kovács Á.T. // Trends Microbiol. 2023. V. 31. P. 845–857. https://doi.org/10.1016/j.tim.2023.02.003

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».