Combined systems of recombinase polymerase amplification and membrane immunochromatography or enzyme linked immunoassay for quantitative determination of Salmonella enterica bacterial DNA

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The combined bioanalytical systems for the detection ofSalmonella entericabacteria in milk have been developed and studied. These test systems are based on isothermal recombinase polymerase amplification (RPA) of a fragment of theinvAgene and detection of the DNA amplicons containing biotin and fluorescein residues by a rapid membrane chromatography on test strips or an enzyme-linked immunosorbent assay (ELISA) in microplates. It was shown that the developed test systems are specific, sensitive and easy to perform. The RPA procedure requires 20 min at a temperature of 40°C. The immunochromatographic detection of amplicons provides rapid testing within 10 min as well as possible visual recording of the result. ELISA takes 75 min, allows to analyze a large number of samples and quantify the result. It has been established that the developed bioanalytical systems are characterized by broad specificity for various serotypes ofSalmonella entericasubspeciesenterica, belonging to serogroups B, C, D and E. The detection limit of genomic DNA ofS. entericain the test systems was 0.5 fg. The detection limit ofSalmonella entericabacteria in artificially contaminated milk samples was 8 × 102CFU/ml. After enrichment for 6 h, the detection limit proved to be 2 × 100CFU per 25 g of milk.

About the authors

T. S. Serchenya

Institute of Bioorganic Chemistry of National Academy of Sciences of Belarus

Email: serchenya@tut.by
Minsk, 220084 Belarus

K. U. Akhremchuk

Institute of Microbiology of National Academy of Sciences of Belarus

Email: serchenya@tut.by
Minsk, 220084 Belarus

L. N. Valentovich

Institute of Microbiology of National Academy of Sciences of Belarus

Email: serchenya@tut.by
Minsk, 220084 Belarus

V. S. Lapina

Institute of Bioorganic Chemistry of National Academy of Sciences of Belarus

Email: serchenya@tut.by
Minsk, 220084 Belarus

O. V. Sviridov

Institute of Bioorganic Chemistry of National Academy of Sciences of Belarus

Author for correspondence.
Email: serchenya@tut.by
Minsk, 220084 Belarus

References

  1. Fung F.,Wang H.S.,Menon S. // Biomed. J. 2018. V. 41 № 2. P. 88–95. https://doi.org/10.1016/j.bj.2018.03.003
  2. Mkangara M. // Int. J. Food Sci. 2023 V. 2023. 8899596. https://doi.org/10.1155/2023/8899596
  3. Lin L.,Zheng Q.,Lin J.,Yuk H.-G.,Guo L. // Eur. Food Res. Technol. 2020. V. 246. P. 373–395. https://doi.org/10.1007/s00217-019-03423-9
  4. Wang M.,Zhang Y.,Tian F.,Liu X.,Du S.,Ren G. // Foods. 2021. V. 10. № 10. P. 2402. https://doi.org/10.3390/foods10102402
  5. “Salmonella”, Official Methods of Analysis of AOAC INTERNATIONAL, 22. / Ed. G.W. Latimer. Oxford University Press, 2023. P. C17-256–C17-259. https://doi.org/10.1093/9780197610145.003.2282
  6. De Boer E.,Beumer R.R. // Int. J. Food Microbiol. 1999. V. 50. Р. 119–130. https://doi.org/10.1016/S0168-1605(99)00081-1
  7. Techathuvanan C.,Draughon F.A.,D’Souza D.H. // J. Food Prot. 2011. V. 74. Р. 294–301. https://doi.org/10.4315/0362-028X.JFP-10-306
  8. Gao D.,Yu J.,Dai X.,Tian Y.,Sun J.,Xu X.,Cai X. // Poult. Sci. 2023. V. 102. 102513. https://doi.org/10.1016/j.psj.2023.102513
  9. Wang W.,Liu L.,Song S.,Tang L.,Kuang H.,Xu C. // Sensors. 2015. V. 15. P. 5281–5292. https://doi.org/10.3390/s150305281
  10. Kuhn K.G.,Falkenhorst G.,Ceper T.H.,Dalby T.,Ethelberg S.,Mølbak K.,Krogfelt K.A. // J. Med. Microbiol. 2012. V. 61. P. 1–7. https://doi.org/10.1099/jmm.0.034447-0
  11. Hendrickson O.D.,Byzova N.A.,Safenkova I.V.,Panferov V.G.,Dzantiev B.B.,Zherdev A.V. // Nanomaterials (Basel). 2023. V. 13. № 23. P. 3074. https://doi.org/10.3390/nano13233074
  12. Zhang H.Q.,Li H.N.,Zhu H.L.,Pekarek J.,Podesva P.,Chang,H.L.,Neuzil P. // Sens. Actuator B-Chem. 2019. V. 298. Р. 1–6. https://doi.org/10.1016/j.snb.2019.126924
  13. Sidstedt M.,Rådström P.,Hedman J. // Anal. Bioanal. Chem. 2020. V. 412. № 9. Р. 2009–2023. https://doi.org/10.1007/s00216-020-02490-2
  14. Bickley J.,Short J.K.,McDowell D.G.,Parkes H.C. // Lett. Appl. Microbiol. 1996. V. 22. № 2. P. 153–158. https://doi.org/10.1111/j.1472-765X.1996.tb01131.x
  15. Powell H.A.,Gooding C.M.,Garrett S.D.,Lund B.M.,Mckee R.A. // Lett.Appl. Microbiol. 1994. V. 8. № 1. P. 59–61. https://doi.org/10.1111/j.1472-765X.1994.tb00802.x
  16. Ivanov A.V.,Safenkova I.V.,Drenova N.V.,Zherdev A.V.,Dzantiev B.B. // Biosensors. 2022. V. 12. P. 1174. https://doi.org/10.3390/bios12121174
  17. Hu J.,Huang R.,Sun Y.,Wei X.,Wang Y.,Jiang C. et al. // J. Microbiol. Methods. 2019. V. 158. P. 25–32. https://doi.org/10.1016/j.mimet.2019.01.018
  18. Chen J.,Liu X.,Chen J.,Guo Z.,Wang Y.,Chen G. et al. // Food Anal. Methods. 2019. V. 12. P. 1791–1798. https://doi.org/10.1007/s12161-019-01526-3
  19. Daher R.K.,Stewart G.,Boissinot M.,Bergeron M.G. // Clin. Chem. 2016. V. 62. P. 947–958. https://doi.org/10.1373/clinchem.2015.245829
  20. Notomi T.,Okayama H.,Masubuchi H.,Yonekawa T.,Watanabe K.,Amino N.,Hase T. // Nucleic Acids Res. 2000. V. 28. № 12. P. E63. https://doi.org/10.1093/nar/28.12.e63
  21. Barreda-García S.,Miranda-Castro R.,de-Los-Santos-Álvarez N.,Miranda-Ordieres A.J.,Lobo-Castañón M.J. // Anal. Bioanal. Chem. 2018. V. 410. № 3. P. 679–693. https://doi.org/10.1007/s00216-017-0620-3
  22. Le B.H.,Seo Y.J.// Bioorg. Med. Chem. Lett. 2018. V. 28. P. 2035–2038. https://doi.org/10.1016/j.bmcl.2018.04.058
  23. Ivanov A.V.,Safenkova I.V.,Zherdev A.V.,Dzantiev B.B. // Talanta. 2020. V. 210. P. 120616. https://doi.org/10.1016/j.talanta.2019.120616
  24. Zhao L.,Wang J.,Sun X.X.,Wang J.,Chen Z.,Xu X. et al. // Front Cell Infect. Microbiol. 2021. V. 11. P. 631921. https://doi.org/10.3389/fcimb.2021.631921
  25. Ahmed A.,van der Linden H.,Hartskeerl R.A. // Int. J. Environ. Res. Public Health. 2014. V. 11. P. 4953–4964. https://doi.org/10.3390/ijerph110504953
  26. Kim J.Y.,Lee J.-L. // J. Food Saf. 2016. V. 36. P. 402–411. https://doi.org/10.1111/jfs.12261
  27. Li J.,Ma B.,Fang J.,Zhi A.,Chen E.,Xu Y.,Sun C.,Zhang M. // Foods. 2020. V. 9. № 1. P. 27. https://doi.org/10.3390/foods9010027
  28. Liao C.,Pan L.,Tan M.,Zhou Z.,Long S.,Yi X. et al.// Front. Bioeng. Biotechnol. 2024. V. 12. 1379939. https://doi.org/10.3389/fbioe.2024.1379939
  29. Liu R.,Wang Z.,Liu X.,Chen A.,Yang S. // Poult. Sci. 2020. V. 99. № 12. P. 7225–7232. https://doi.org/10.1016/j.psj.2020.10.020
  30. Santiago-Felipe S.,Tortajada-Genaro L.A.,Morais S.,Puchades R.,Maquieira A. // Food Chem. 2015. V. 174. P. 509–515. https://doi.org/10.1016/j.foodchem.2014.11.080
  31. Serchenya T.S.,Akhremchuk K.U.,Valentovich L.N.,Lapina V.S.,Sviridov O.V. // Proceedings of the National Academy of Sciences of Belarus. Chemical series.2024. V. 60. № 4. P. 314–325 (in Russian). https://doi.org/10.29235/1561-8331-2024-60-4-314-325
  32. Frens G. // Nature Physical Science. 1973. V. 241. P. 20–22. https://doi.org/10.1038/physci241020a0
  33. Byzova N.A.,Serchenya T.S.,Vashkevich I.I.,Zherdev A.V.,Sviridov O.V.,Dzantiev B.B. // Microchemical Journal. 2020. V. 156. Аrticle 104884. https://doi.org/10.1016/j.microc.2020.104884
  34. Hermanson G.T. Bioconjugate Techniques. Elsevier. 1996. P. 377-380.
  35. Wallace H.A,Wang H.,Jacobson A.,Ge B.,Zhang G.,Hammack T.Bacteriological Analytical Manual (BAM). Chapter 5: Salmonella. 2023. https://www.fda.gov/food/laboratory-methods-food/bacteriological-analytical-manual-bam
  36. Rahn K.,De Grandis S.A.,Clarke R.C.,McEwen S.A.,Galán J.E.,Ginocchio C. et al. // Mol. Cell Probes. 1992. V. 6. № 4. P. 271–279. https://doi.org/10.1016/0890-8508(92)90002-f
  37. Galán J.E.,Curtiss R. // Proc. Natl. Acad. Sci. USA. 1989. V. 86. № 16. Р. 6383–6387. https://doi.org/10.1073/pnas.86.16.6383
  38. González-Escalona N.,Brown E.W.,Zhang G. // Food Res. Int. 2012. V. 48. P. 202–208. https://doi.org/10.1016/j.foodres.2012.03.009
  39. Brenner F.W.,Villar R.G.,Angulo F.J.,Tauxe R.,Swaminathan B. // J. Clin. Microbiol. 2000. V. 38. № 7. P. 2465–2467. https://doi.org/10.1128/JCM.38.7.2465-2467.2000
  40. Gao W.,Huang H.,Zhu P.,Yan X.,Fan J.,Jiang J.,Xu J. // Bioprocess Biosyst. Eng. 2018 V. 41. № 5. Р. 603–611. https://doi.org/10.1007/s00449-018-1895-2
  41. Choi G.,Jung J.H.,Park B.H.,Oh S.J.,Seo J.H.,Choi J.S.,Kim D.H.,Seo T.S. // Lab on a Chip. 2016. V. 16. № 12. P. 2309–2316. https://doi.org/10.1039/c6lc00329j
  42. Yang Q.,Wang F.,Jones K.L.,Meng J.,Prinyawiwatkul W.,Ge B.// Food Microbiol. 2015. V. 46. P. 485–493. https://doi.org/10.1016/j.fm.2014.09.011

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).