Метод in vivo биотинилирования рекомбинантных белков вируса натуральной оспы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе реализован метод специфического in vivo биотинилирования рекомбинантных белков M1 и B7 вируса натуральной оспы при биосинтезе в клетках СНО-К1. Для этого проводили коэкспрессию биотин-лигазы BirА и целевых генов, кодирующих эктодомены белков M1 и B7 с С-концевым avi-tag в клетках СНО-К1 в присутствии биотина в культуральной среде. Оптимальная концентрация биотина для экспрессии белков M1 и B7 составила 125 мкМ. Продукция биотинилированных рекомбинантных белков была осложнена низким выходом. Для повышения продукции целевых белков в культуральную среду добавляли низкомолекулярные энхансеры: лития ацетат, натрия вальпроат и кофеин. Энхансеры увеличивали продукцию целевого белка в 1.3–4.9 раза и не оказывали негативного влияли на выход биотинилированного белка. Наиболее высокий выход биотинилированного белка достигался при одновременном добавлении лития ацетата в концентрации 10 мМ и натрия вальпроата 2.5 мМ. Полученные таким образом белки могут быть использованы для сортировки специфических В-лимфоцитов.

Полный текст

Доступ закрыт

Об авторах

В. Н. Никитин

Государственный научный центр вирусологии и биотехнологии “Вектор” Роспотребнадзора

Email: dnshcherbakov@gmail.com
Россия, р.п. Кольцово, 630559

Ю. А. Меркульева

Государственный научный центр вирусологии и биотехнологии “Вектор” Роспотребнадзора

Email: dnshcherbakov@gmail.com
Россия, р.п. Кольцово, 630559

Д. Н. Щербаков

Государственный научный центр вирусологии и биотехнологии “Вектор” Роспотребнадзора; Алтайский государственный университет

Автор, ответственный за переписку.
Email: dnshcherbakov@gmail.com
Россия, р.п. Кольцово, 630559; Барнаул, 656049

Список литературы

  1. Mendoza-Topaz C. // Methods Mol. Biol. 2020. V. 2169. P. 89–103.
  2. Habel J.E. // Methods Mol. Biol. 2021. V. 2261. P. 357–379.
  3. Suzuki Y., Kadomatsu K., Sakamoto K. // The Journal of Biochemistry. 2023. V. 173. № 6. P. 413–415. https://doi.org/10.1093/jb/mvad013
  4. De Boer E., Rodriguez P., Bonte E., Krijgsveldt J., Katsantoni E., Heckt A. et al. // Proc. Natl. Acad. Sci. U S A. 2003. V. 100. № 13. P. 7480–7485.
  5. Kido K., Yamanaka S., Nakano S., Motani K., Shinohara S., Nozawa A., et al. // Elife. 2020. V. 9. https://doi.org/10.7554/eLife.54983
  6. Kulyyassov A., Ramankulov Y., Ogryzko V. // Life. 2022. V. 12. № 2. P. 300. https://doi.org/10.3390/life12020300
  7. Wang Q., Wagner R.T., Cooney A.J. // PLoS One. 2013. V. 8. № 5. P. e63532. https://doi.org/10.1371/journal.pone.0063532
  8. Roldán J.S., Cassola A., Castillo D.S. // Biotechnology Reports. 2020. V. 25. p. e00434. https://doi.org/10.1016/j.btre.2020.e00434
  9. Rahimi A., Karimipoor M., Mahdian R., Alipour A., Hosseini S., Mohammadi M. et al. // Iran J. Biotechnol. 2023. V. 21. № 2. e3388. https://doi.org/10.30498/ijb.2023.343428.3388
  10. Ghaderi D., Zhang M., Hurtado-Ziola N., Varki A. // Biotechnology & Genetic Engineering Reviews. 2013. V. 28. P. 147–176.
  11. Y ang W., Zhang J., Xiao Y., Li W., Wang T. // Front. Bioeng. Biotechnol. 2022. V. 10. P. 858478. https://doi.org/10.3389/fbioe.2022.858478
  12. Bhatwa A., Wang W., Hassan Y.I., Abraham N., Li X.Z., Zhou T.// Front. Bioeng. Biotechnol. 2021. V 9. https://doi.org/10.3389/fbioe.2021.630551
  13. Stuible M., Gervais C., Lord-Dufour S., Perret S., L’Abbé D., Schrag J. et al. // J. Biotechnol. 2021. V. 326. P. 21–27.
  14. Kusakabe T. // J. Pharmacol. Sci. 2023. V. 151. № 3. P. 156–161.
  15. Thoring L., Dondapati S.K., Stech M., Wüstenhagen D.A., Kubick S. // Scientific Reports. 2017. V. 7. № 1. P. 1–15.
  16. Iwasaki A. // Annu Rev Microbiol. 2012. V. 66. P. 177–196.
  17. Mojzesz M., Rakus K., Chadzinska M., Nakagami K., Biswas G., Sakai M. et al. // Int. J. Mol. Sciences. 2020. V. 21. № 19. P. 7289. https://doi.org/10.3390/ijms21197289
  18. Ha T.K., Kim Y.G., Lee G.M. // Appl. Microbiol. Biotechnol. 2014. V. 98. № 22. P. 9239–9248.
  19. Yang W.C., Lu J., Nguyen N.B., Zhang A., Healy N.V., Kshirsagar R. et al. // Mol Biotechnol. 2014. V. 56. № 5. P. 421–428.
  20. Backliwal G., Hildinger M., Kuettel I., Delegrange F., Hacker D.L., Wurm F.M. // Biotechnol Bioeng. 2008. V. 101. № 1. P. 182–189.
  21. Avello V., Torres M., Vergara M., Berrios J., Valdez-Cruz N.A., Acevedo C. et al. // PLoS One. 2022. V. 17. № 11. P. e0277620. https://doi.org/10.1371/journal.pone.0277620
  22. Ha T.K., Kim D., Kim C.L., Grav L.M., Lee G. M. // Biotechnol Adv. 2022. V 54. P. 107831. https://doi.org/10.1016/j.biotechadv.2021.107831
  23. Патент Россия. 2020. RU2749459C1.
  24. Патент Россия. 2021. RU2752858C1.
  25. Dobson L.J., Saunderson S.C., Smith-Bell S.W.J., McLellan A.D. // Immunol Cell Biol. 2023. V 101. № 9. P. 847–856.
  26. Kupcsik L. // Methods Mol Biol. 2011. V. 740. P. 13–19.
  27. YekrangSafakar A., Mehrnezhad A., Wu T., Park K. // Biotechnol Bioeng. 2022. V. 119. № 6. P. 1498–1508.
  28. Hou X., Wei W., Fan Y., Zhang J., Zhu N., Hong H. et al. // Appl Microbiol Biotechnol. 2017. V. 101. № 13. P. 5259–5266.
  29. Gilchuk I., Gilchuk P., Sapparapu G., Lampley R., Singh V., Kose N. et al. // Cell. V. 167. № 3. P. 684–694.
  30. Kaever T., Meng X., Matho M. H., Schlossman A., Li S., Sela-Culang I. et al. // J Virol. 2014. V. 88. № 19. P. 11339–11355.
  31. Ivics Z., Hackett P.B., Plasterk R.H., Izsvák Z. // Cell. 1997. V. 91. № 4. P. 501–510.
  32. Niers J.M., Chen J.W., Weissleder R., Tannous B.A. // Anal Chem. 2011. V. 83. № 3. P. 994–999.
  33. Патент США. 2008. US8241870B2.
  34. Gräslund S., Savitsky P., Müller-Knapp S. // Methods Mol. Biol. 2017. V. 1586. P. 337–344.
  35. Petris G., Vecchi L., Bestagno M., Burrone O.R. // PLoS One. 2011. V. 6. № 8. P. e23712. https://doi.org/10.1371/journal.pone.0023712.
  36. Predonzani A., Arnoldi F., López-Requena A., Burrone O.R. // BMC Biotechnol. 2008. V. 8. P. 41. https://doi.org/10.1186/1472-6750-8-41.
  37. Rubiyana Y., Damajanti Soejoedono R., Santoso A. // Indonesian Journal of Biotechnology. 2020. V. 25. № 1. P. 28. https://doi.org/10.22146/ijbiotech.52621.
  38. Wulhfard S., Baldi L., Hacker D.L., Wurm F. // Biotechnol. 2010. V. 148. № 2–3. P. 128–132.
  39. Fomina-Yadlin D., Mujacic M., Maggiora K., Quesnell G., Saleem R., McGrew J.T. // J. Biotechnol. 2015. V. 212. P. 106–115.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Карта плазмидного вектора pVEAL-BirA (а) и последовательность кассеты экспрессии гена BirA (б).

Скачать (245KB)
3. Рис. 2. Карта плазмидного вектора pVEAL2 (а) и генов M1R (б) и B7R (в), содержащих сигнальный пептид секреции, метки his-tag и avi-tag.

Скачать (283KB)
4. Рис. 3. Жизнеспособность клеток СHO-K1 (1) и СHO-BirA (2) при культивировании в присутствии различных концентраций биотина.

Скачать (49KB)
5. Рис. 4. Вестрен-блот анализ биотинилированных белков: M1 (а) и B7 (б), 1, 3 – выделенных из культуральной среды с добавлением экзогенного биотина, 2, 4 – из культуральной среды без биотина, М – маркер.

Скачать (120KB)
6. Рис. 5. Уровень биотинилирования (%) белка В7 вируса натуральной оспы в зависимости от концентрации биотина в культуральной среде. Представлены значения, нормализованные по максимальной оптической плотности.

Скачать (58KB)
7. Рис. 6. Количество общего и биотинилированного рекомбинантного белка B7 (а) и М1 (б) вируса натуральной оспы в культуральной среде, в зависимости от концентрации энхансеров в среде.

Скачать (348KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».