Method of DNA Extraction from Plant for Metagenomic Analysis as Example from Grape Vitis amurensis Rupr.

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new method for extracting DNA from plants is proposed, using the example of wild grapes Vitis amurensis Rupr., for further preparation of libraries for metagenomic analysis. The method is based on the isolation of DNA by an inexpensive CTAB method with an additional stage of DNA purification using silica spin columns (CTAB spin method). A comparative analysis of the results of metagenomic analysis of endophytes on DNA isolated using the proposed CTAB-spin method and using the commercial set ZymoBIOMICS DNA Miniprep (Zymo Research). It was found that when using the CTAB-spin method, the number of sequences of the 16S rRNA site and the diversity of bacterial genera were 2.8 and 1.2 times greater, respectively, than when using the ZymoBIOMICS kit. At the same time, the number of sequences of the internal transcribed spacer 1 (ITS1) and the biodiversity of endophytic fungi did not differ significantly during DNA extraction by two methods. Thus, the proposed method of DNA isolation for metagenomic analysis is an available and effective alternative to commercial kits for the isolation of plant DNA for new generation sequencing methods.

About the authors

K. V. Kiselev

Federal Scientific Center of the Biodiversity, Far Eastern Branch of the Russian Academy of Sciences,
Laboratory of Biotechnology

Email: aleynova@biosoil.ru
Russia, 690022, Vladivostok

N. N. Nityagovsky

Federal Scientific Center of the Biodiversity, Far Eastern Branch of the Russian Academy of Sciences,
Laboratory of Biotechnology

Email: aleynova@biosoil.ru
Russia, 690022, Vladivostok

О. А. Aleynova

Federal Scientific Center of the Biodiversity, Far Eastern Branch of the Russian Academy of Sciences,
Laboratory of Biotechnology

Author for correspondence.
Email: aleynova@biosoil.ru
Russia, 690022, Vladivostok

References

  1. Behjati S., Tarpey P.S. // ADS – Education and Practice. 2013. V. 98. P. 236–238.
  2. Slatko B.E., Gardner A.F., Ausubel F.M. // Current Protocols in Mol. Biol. 2018. V. 122. P. e59.https://doi.org/10.1002/cpmb.59
  3. Kulski J.K. Next-Generation Sequencing – An Overview of the History, Tools, and “Omic” Applications. / Ed. J.K. Kulski. IntechOpen. 2016. P. 60.https://doi.org/10.5772/61964
  4. Lam H.Y.K., Clark M.J., Chen R., Chen R., Natsoulis G., O’Huallachain M. et al. // Nat Biotechnol. 2012. V. 30. P. 78–82.
  5. Wang Z., Gerstein M., Snyder M. // Nat. Rev. Genet. 2009. V. 10. P. 57–63.
  6. Rabbani B., Tekin M., Mahdieh N. // J. Hum. Genet. 2014. V. 59. P. 5–15.
  7. Leo V.C., Morgan N.V., Bem D., Jones M.L., Lowe G.C., Lordkipanidzé M. et al. // J. Thrombosis and Haemostasis. 2015. V. 13. P. 643–650.
  8. Kulski J.K., Suzuki S., Ozaki Y., Mitsunaga S., Inoko H., Shiina T. Phase HLA Genotyping by NGS – A Comparison Between two Massively Parallel Sequencing Bench-top Systems, the Roche GS Junior and Ion Torrent PGM. / Ed. Y. Xi. IntechOpen. 2014. P. 141–181.
  9. Pelizzola M., Ecker J.R. // FEBS Letters. 2011. V. 585. P. 1994–2000.
  10. Simner P.J., Miller S., Carroll K.C. // Clin. Infect. Dis. 2018. V. 66. P. 778–788.
  11. Boers S.A., Jansen R., Hays J.P. // Eur. J. Clin. Microbiol. Infect. Dis. 2019. V. 38. P. 1059–1070.
  12. Chiu C.Y., Miller S.A. // Nat. Rev. Genet. 2019. V. 20. P. 341–355.
  13. Iquebal M.A., Jagannadham J., Jaiswal S., Prabha R., Rai A., Kumar D. // Front. Microbiol. 2022. V. 13. P. 708335. https://doi.org/10.3389/fmicb.2022.708335
  14. Fan Y., Gao L., Chang P., Li Z. // Annals of Microbiology. 2020. V. 70. P. 30. https://doi.org/10.1186/s13213-020-01574-9
  15. Cureau N., Threlfall R., Marasini D., Lavefve L., Carbonero F. // Microb. Ecol. 2021. V. 82. P. 845–858.
  16. Marasco R., Rolli E., Fusi M., Michoud G., Daffonchio D. // Microbiome. 2018. V. 6. P. 3.https://doi.org/10.1186/s40168-017-0391-2
  17. Deyett E., Rolshausen P.E. // Front. Plant Sci. 2019. V. 10. P. 1246. https://doi.org/10.3389/fpls.2019.01246
  18. Kiselev K.V., Tyunin A.P., Karetin Y.A. // Plant Cell Rep. 2015. V. 34. P. 311–320.
  19. Ogneva Z.V., Dubrovina A.S., Kiselev K.V. // Biol. Plant. 2016. V. 60. P. 628–634.
  20. Aleynova O.A., Nityagovsky N.N., Dubrovina A.S., Kiselev K.V. // Plants. 2022. V. 11. P. 1128. https://doi.org/10.3390/plants10071276
  21. Deyett E., Rolshausen P.E. // FEMS Microbiol Ecol. 2020. V. 96. P. fiaa053. https://doi.org/10.1093/femsec/fiaa053
  22. Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C.C., Al-Ghalith M. et al. Nat. Biotechnol. 2019. V. 37. P. 852–857.
  23. Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. // Nat. Methods. 2016. V. 13. P. 581–583.
  24. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., et al. // J. Machine Learn. Research. 2011. V. 12. P. 2825–2830.
  25. Bokulich N.A., Kaehler B.D., Rideout J.R., Dillon M., Bolyen E. et al // Microbiome. 2018. V. 6. P. 90. https://doi.org/10.1186/s40168-018-0470-z
  26. Nilsson R.H., Larsson K.-H., Taylor A.F.S., Bengtsson–Palme J., Jeppesen T.S., Schigel D. et al // Nucleic Acids Research. 2019. V. 47. P. D259–D264.
  27. McMurdie P.J., Holmes S. // PLOS ONE. 2013. V. 8. P. e61217.https://doi.org/10.1371/journal.pone.0061217
  28. Wickham H., Averick M., Bryan J., Chang W., McGowan L.D., François R. et al. // J. Open Source Software. 2019. V. 4. P. 1686. https://doi.org/10.21105/joss.01686
  29. Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D. et al // Vegan: Community Ecology Package. R Package Version 2.5-7. 2020. Доступно онлайн: https://cran.r-project.org/web/packages/vegan/vegan.pdf (дата обращения 9 января 2023).
  30. Gu Z., Eils R., Schlesner M. // Bioinformatics. 2016. V. 32. P. 2847–2849.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (193KB)
3.

Download (153KB)

Copyright (c) 2023 К.В. Киселев, Н.Н. Нитяговский, О.А. Алейнова

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».