Influence of Bacterial Mutualists and Phytopatogenes on Changes in Concentrations of cAMP and H2O2 in Pea Seedles of Rondo Varieties and its Clutterless and Superclub Mutants

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Changes in the concentrations of hydrogen peroxide and cyclic adenosine monophosphate (cAMP) in the roots of seedlings of pea cv. Rondo and its supernodulating mutant Nod3 and anodulating K14 were studied during infection with Rhizobium leguminosarum bv. vicea (strain RCAM 1022) or Pseudomonas syringae pv. pisi (strain 1845). It was shown that 360 min after infection of pea seedlings of the Rondo variety, the level of endogenous hydrogen peroxide slightly differed from the control. In the roots of Nod3 seedlings, this level significantly decreased, and in the roots of K14 it significantly increased when infected with the 1845 strain, but remained unchanged when exposed to bacteria of the RCAM 1022 strain. and young root hairs of Rondo seedlings, while strain 1845 had no effect on this parameter. Both types of bacteria had no effect on the concentration of cAMP in the roots of seedlings of the Nod3 mutant, whereas in K14, under the influence of RCAM 1022, the cAMP level almost doubled, and under the influence of 1845, it decreased. It is assumed that hydrogen peroxide and cAMP may be involved in the formation of supernodulating and nodulating phenotypes of mutants, as well as in the formation of resistance to a specific pathogen, Pseudomonas syringae pv. pisi. It is possible that this phenomenon can be used to diagnose the resistance of newly created mutants and pea varieties to the blight pathogen.

About the authors

L. A. Lomovatskaya

Siberian Institute of Plant Physiology and Biochemistryof the Siberian Branch of RAS

Author for correspondence.
Email: LidaL@sifibr.irk.ru
Russia, 664033, Irkutsk

O. V. Zakharova

Siberian Institute of Plant Physiology and Biochemistryof the Siberian Branch of RAS

Email: LidaL@sifibr.irk.ru
Russia, 664033, Irkutsk

A. M. Goncharova

Siberian Institute of Plant Physiology and Biochemistryof the Siberian Branch of RAS

Email: LidaL@sifibr.irk.ru
Russia, 664033, Irkutsk

A. S. Romanenko

Siberian Institute of Plant Physiology and Biochemistryof the Siberian Branch of RAS

Email: LidaL@sifibr.irk.ru
Russia, 664033, Irkutsk

References

  1. Власова Е.Ю., Сидорова К.К., Гляненко М.Н., Мищенко Т.М. // Вавиловский журнал генетики и селекции. 2012. Т. 16. № 4/2. С. 879–886.
  2. Nanda A.K., Andrio E., Marino D., Pauly N., Dunand C. // J. Integrative Plant Biology. 2010. V. 52. № 2. P. 195–204.
  3. Torres M.A. // Physiologia Plantarum. 2010. V. 138. № 4. P. 414–429.
  4. Ma W., Qi Z., Smigel A., Walker R.K., Verma R., Gerald A. Berkowitz G.A. // PNAS. 2009. V. 106. № 49. P. 20995–21000.
  5. Ломоватская Л.А., Кузакова О.В., Гончарова А.М., Романенко А.С. // Физиология растений. 2020. Т. 67. № 3. С. 270–277. https://doi.org/10.1134/S0015330320020104
  6. Suzuki N., Katano K. // Front. Plant Sci. 2018. V. 9. P. 490. https://doi.org/10.3389/fpls.2018.00490
  7. Макарова Л.Е., Нурминский В.Н. // Цитология. 2005. Т. 47. № 6. С. 519–525.
  8. Ломоватская Л.А., Кузакова О.В., Романенко А.С., Гончарова А.М. // Физиология растений. 2018. Т. 65. № 4. С. 310–320.
  9. Galletti R., Denoux C., Gambetta S., Dewdney J., F.M. De Lorenzo A., Ferrari S. // Plant. Physiol. 2008. V. 148. P. 1695–1706.
  10. Звягинцев Д.Г., Бабьева И.П., Зенова Г.М. М.: Изд-во МГУ, 2005. 445 с.
  11. Bleau J.R., Spoel S.H. // Plant Physiol. 2021. V. 186. P. 53–65.
  12. Tsyganova A.V., Brewin N.J., Tsyganov V.E. // Cells. 2021. V. 10. № 1050. P. 1–32.
  13. Кузакова О.В., Ломоватская Л.А., Гончарова А.М., Романенко А.С. // Физиология растений. 2019. Т. 66. № 5. С. 360–366.
  14. Bhuvaneswari T.V., Turgeon B.G., Bauer W.D. // Plant Physiol. 1980. V. 66. № 6. P. 1027–1031.
  15. Серегина Н.В., Честнова Т.В., Жеребцова В.А., Хромушин В.А. // Вестник новых медицинских технологий. 2008. № 4. С. 75–77.
  16. Цыганова А.В., Цыганов В.Е. // Успехи современной биологии. 2012. Т. 132. № 2. С. 211–222.
  17. Вершинина З.P., Лавина А.M., Чубукова О.B. // Биомика. 2020. Т. 12. № 1. С. 27–49. https://doi.org/10.31301/2221-6197.bmcs.2020-3
  18. Жуков В.А., Рычагова Т.С., Штарк О.Ю., Борисов А.Ю., Тихонович И.А. // Экологическая генетика. 2008. Т. 6. № 4. С. 12–19.
  19. Бабоша А.В. // Журн. общей биологии. 2008. Т. 69. № 5. С. 379–396.
  20. Peleg–Grossman S., Melamed–Book N., Levine A. // Plant Signaling & Behavior. 2012. V. 7. № 3. P. 409–415.
  21. Hawkins J.P., Oresnik I.J. // Front. Plant Sci. 2022. https://doi.org/10.3389/fpls.2021.796045
  22. Bleau J.R., Spoel S.H. // Plant Physiol. 2021. V. 186. P. 53–65. https://doi.org/10.1093/plphys/kiaa088
  23. Gourion B., Berrabah F., Ratet P., Stacey G. // Trends in Plant Sci. 2015. V. 20. № 3. P. 186–194.
  24. Bolwell G.P., Bindschedler L.V., Blee K.A., Butt V.S., Davies D.R., Gardner S.L., Minibayeva F. // J. Exp. Bot. 2002. V. 53. № 372. P. 1367–1376.
  25. Ca’rdenas L., Martı’nez A., Sa’nchez F., Quinto K. // Plant J. 2008. V. 56. P. 802–813. https://doi.org/10.1111/j.1365-313X.2008.03644.x
  26. Takemoto J.Y., Zhang L., Taguchi N., Tachikawa T., Miyakawa T. // Microbiology. 1991. V. 137. № 3. P. 653–659.
  27. Ichinose Y., Taguchi F., Mukaihara T. // J. Gen. Plant Pathol. 2013. № 79. P. 285–296.
  28. Terakado J., Fujihara S., Yoneyama T. // Soil Sci. & Plant Nutr. 2003. V. 49. № 3. P. 459–462.
  29. Xu R., Guo Y., Peng S.,Liu J., Li P., Jia W., Zhao J. // Biomolecules. 2021. V. 1. P. 688. doi.org/10.3390
  30. Сидорова К.К., Шумный В.К. // Сибирский экологический журн. 1999. № 3. С. 281–288.
  31. Sabetta W., Vandelle E., Locato V., Costa A., Cimini S., Moura A.B., Luoni L., Graf A., Viggiano L., De Gara L., Bellin D., Blanco E., de Pinto. M.C. // Plant J. 2019. V. 98. P. 590–606.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (60KB)
3.

Download (125KB)
4.

Download (115KB)

Copyright (c) 2023 Л.А. Ломоватская, О.В. Захарова, А.М. Гончарова, А.С. Романенко

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».