Soot Formation Tendency of Various Hydrocarbons During Pyrolysis Behind Shock Waves
- Autores: Drakon А.V.1, Eremin A.V.1, Zolotarenko V.N.1,2, Korshunova М.R.1, Mikheyeva Е.Y.1
-
Afiliações:
- Joint Institute for High Temperatures RAS
- Moscow Institute of Physics and Technology
- Edição: Volume 65, Nº 6 (2024)
- Páginas: 609-628
- Seção: ОБЗОРЫ
- URL: https://ogarev-online.ru/0453-8811/article/view/285134
- DOI: https://doi.org/10.31857/S0453881124060021
- EDN: https://elibrary.ru/QKPASS
- ID: 285134
Citar
Resumo
In this work, an experimental study of soot formation during pyrolysis of linear and cyclic hydrocarbons with different bond types between carbon atoms was carried out. Methane CH4, acetylene C2H2, ethylene C2H4 and benzene C6H6; methyl, ethyl and butyl alcohols CH3OH, C2H5OH, C4H9OH; linear esters dimethyl, diethyl and dimethoxymethane CH3OCH3, C2H5OC2H5, CH3OCH2OCH3; cyclic esters furan and tetrahydrofuran C4H4O, C4H8O pyrolysis have been investigated. The laser extinction method was used to measure the soot volume fraction, and the laser induced incandescence method was used for in situ nanoparticle size measurements. The temperature dependences of the soot volume fraction and particles sizes, as well as the induction times of carbon nanoparticles inception and the effective activation energy values of the initial pyrolysis stage of selected hydrocarbons were obtained. The structure of carbon nanoparticles formed during acetylene C2H2, ethylene C2H4 and furan C4H4O pyrolysis was analyzed using microphotographs obtained on a transmission electron microscope. A kinetic modeling of soot formation during studied hydrocarbons pyrolysis has been carried out. In the case of methane CH4, ethylene C2H4, furan C4H4O and tetrahydrofuran C4H8O the soot yield and the calculated effective activation energies of the initial pyrolysis reactions correlate with experimental data. In the case of acetylene C2H2 and benzene C6H6 pyrolysis, kinetic modeling greatly underestimates the soot yield. For benzene, the calculated effective activation energy value of the initial pyrolysis reactions does not agree with the experimental data. This fact may be related to the lack of polyyne path of soot growth in the considered kinetic mechanism that is especially important in case of acetylene and benzene pyrolysis. This hypothesis is justified by comparing the effective activation energy of the initial reactions during benzene pyrolysis obtained using experimental and calculated data.
Palavras-chave
Sobre autores
А. Drakon
Joint Institute for High Temperatures RAS
Email: mr.korshunova.95@gmail.com
Rússia, Izhorskaya, 13, bldg. 2, Moscow, 125412
A. Eremin
Joint Institute for High Temperatures RAS
Email: mr.korshunova.95@gmail.com
Rússia, Izhorskaya, 13, bldg. 2, Moscow, 125412
V. Zolotarenko
Joint Institute for High Temperatures RAS; Moscow Institute of Physics and Technology
Email: mr.korshunova.95@gmail.com
Rússia, Izhorskaya, 13, bldg. 2, Moscow, 125412; Institutskiy Pereulok, 9, Dolgoprudny, 141701
М. Korshunova
Joint Institute for High Temperatures RAS
Autor responsável pela correspondência
Email: mr.korshunova.95@gmail.com
Rússia, Izhorskaya, 13, bldg. 2, Moscow, 125412
Е. Mikheyeva
Joint Institute for High Temperatures RAS
Email: mr.korshunova.95@gmail.com
Rússia, Izhorskaya, 13, bldg. 2, Moscow, 125412
Bibliografia
- Bond T.C., Doherty S.J., Fahey D.W., Forster P.M., Berntsen T., DeAngelo B.J., Flanner M.G., Ghan S., Kärcher B., Koch D., Kinne S., Kondo Y., Quinn P.K., Sarofim M.C., Schultz M.G., Schulz M., Venkataraman C., Zhang H., Zhang S., Bellouin N., Guttikunda S.K., Hopke P.K, Jacobson M.Z., Kaiser J.W., Klimont Z., Lohmann U., Schwarz J.P., Shindell D., Storelvmo T., Warren S.G., Zender C.S. // J. Geophys. Res. Atmos. 2013. V. 118. P. 5380.
- Niranjan R., Thakur A.K. // Front. Immunol. 2017. V. 8. P. 763.
- Schwartz J., Laden F., Zanobetti A. // Environ. Health Perspect. 2002. V. 110. P. 1025.
- Schulz F., Commodo M., Kaiser K., De Falco G., Minutolo P., Meyer G., D’Anna A., Gross L. // Proc. Combust. Inst. 2019. V. 37. P. 885.
- Liu W., Zhai J., Lin B., Lin H., Han D. // Front. Energy. 2020. V. 14. P. 18.
- Mannazhi M., Torok S., Gao J., Bengtsson P.-E. // Proc. Combust. Inst. 2021. V. 38. P. 1217.
- Drakon A.V., Eremin A.V., Gurentsov E.V., Mikheyeva E., Kolotushkin R. // Appl. Phys. B. 2021. V. 127. P. 81.
- Bauerle St., Karasevich Y., Slavov St., Tanke D., Tappe M., Thienel Th., Wagner H.Gg. // Symp. (Int.) Combust. 1994. V. 25. P. 627.
- Ishii K., Ohashi N., Teraji A., Kubo M. / Proc. of the 22nd International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), Minsk-Belarus, July 27–31, 2009. Paper 184.
- Agafonov G.L., Bilera I.V., Vlasov P.A., Zhiltsova I.V., Kolbanovskii Y.A., Smirnov, V.N., Tereza A.M. // Kinet. Catal. 2016. V. 57. P. 557.
- Olson D.B., Pickens J.C., Gill R.J. // Combust. Flame 1985. V. 62. P. 43.
- Lemaire R., Le Corre G., Nakouri M. // Fuel. 2021. V. 302. Art. 121104.
- McEnally C.S., Pfefferle L.D. // Environ. Sci. Technol. 2011. V. 45. P. 2498.
- Barrientos E.J., Lapuerta M., Boehman A.L. // Combust. Flame. 2013. V. 160. P. 1484.
- Johansson K.O., Dillstrom T., Monti M., Gabaly F., Campbell M.F., Schrader P.E., Popolan-Vaida D.M., Richards-Henderson N.K., Wilson K.R., Violi A., Michelsen H.A. // PNAS USA. 2016. V. 113. P. 8374.
- Liu P., Chen B., Zepeng L., Bennet A., Sioud S., Sarathy S.M., Roberts W.L. // Combust. Flame. 2019. V. 209. P. 441.
- Savic N., Rahman M.M., Miljevic B., Saathoff H., Naumann K.H., Leisner T., Riches J., Gupta B., Motta N., Ristovski Z.D // Carbon. 2016. V. 104. P. 179.
- Verma P., Pickering E., Jafari M., Guo Yi., Stevanovic S., Fernando J., Golberg D., Broooks P., Brown R., Ristovski Z. // Combust. Flame. 2019. V. 205. P. 206.
- Verma P., Jafari M., Ashrafur Rahman S.M., Pickering E., Stevanovic S., Dowell A., Brown R., Ristovski Z. // Fuel. 2020. V. 259. P. 116167.
- Nativel D., Peukert S., Herzler J., Drakon A., Korshunova M., Mikheyeva E., Eremin A., Fikri M., Schulz C. // Proc. Combust. Inst. 2023. V. 39. P. 1099.
- Thangavelu S.K., Ahmed A.S., Ani F.N. // Renew. Sustain. Energy Rev. 2016. V. 56. P. 820.
- Esarte C., Peg M., Ruiz M. P., Millera A., Bilbao R., Alzueta M.U. // Ind. Eng. Chem. Res. 2011. V. 50. P. 4412.
- Camacho J., Lieb S., Wang H. // Proc. Combust. Inst. 2013. V. 34. P. 1853.
- Li Zh., Qiu L., Cheng X., Li Y., Wu H. // Fuel 2018. V. 211. P. 517
- Khan A., Hellier P., Ladommatos N., Almaleki A. // J. Anal. Appl. Pyrolysis. 2024. V. 177. P. 106346.
- Cepeda F., Di Liddo L., Serwin M., Karatas A.E., Dworkin S.B. // Proc. Combust. Inst. 2023. V. 39. P. 1997.
- Hidaka Y., Sato K., Yamane M. // Combust. Flame 2000. V. 123. P. 1.
- Jeon M.-K., Kim N.I. // Math. Model. Nat. Phenom. 2018. V. 13. P. 56.
- Doan Q.B., Nguyen X.P., Pham V.V., Dong T.M. H., Pham M.T., Le T.S. // Int. J. Renew. Energy Dev. 2022. V. 11. P. 255.
- Paul A., Bose P.K., Panua R., Debroy D. // J. Energy Inst. 2015. V. 88. P. 1.
- Ibrahim A. // Eng. Sci. Technol. Int. J. 2018. V. 21. P. 1024.
- Sinha A., Thomson M.J. // Combust. Flame 2004. V. 136. P. 548.
- Sirignano M., Conturso M. and D’Anna A. // Proc. Combust. Inst. 2015. V. 35. P. 525.
- Wu Ya., Zhang X., Zhang Zh., Wang X., Geng Zh., Jin Ch., Liu H., Yao M. // Fuel. 2020. V. 271. P. 117633.
- Drakon A.V., Eremin A.V., Korshunova M.R. and Mikheyeva E.Yu. // Combust. Explos. Shock Waves 2022. V. 58. P. 430.
- Nativel D., Herzel J., Kryzwdziak S., Peukert S., Fikri M., Shultz C. // Combust. Flame 2022. V. 243. Art. 111985.
- Eremin A., Gurentsov E., Mikheyeva E. // Combust. Flame 2015. V. 162. P. 207.
- Eremin A., Gurentsov E., Popova E., Priemchenko K. // Appl. Phys. B. 2011. V. 104. P. 285.
- Daun K.J. // Int. J. Heat Mass Transf. 2009. V. 52. P. 5081.
- Gurentsov E.V., Drakon A.V., Eremin A.V., Kolotushkin R.N., Mikheyeva E.Yu. // High Temp. 2022. V. 60. P. 335.
- Schneider C., Rasband W., Eliceiri K. // Nat. Methods. 2012. V. 9. P. 671.
- Cuoci A., Frassoldati A., Faravelli T., Ranzi E. // Comput. Phys. Commun. 2015. V. 192. P. 237.
- Saggese C., Ferrario S., Camacho J., Cuoci A., Frassoldati A., Ranzi E., Wang H., Faravelli T. // Combust. Flame. 2015. V. 162. P. 3356.
- Yasunaga K., Gillespie F., Simmie J.M., Curran H.J., Kuraguchi Y., Hoshikawa H., Yamane M., Hidaka Y. // J. Phys. Chem. A. 2010. V. 114. P. 9098.
- Marrodan L., Royo E., Millera A., Bilbao R., Alzueta M.U. // Energy Fuels. 2015. V. 29. P. 3507.
- Pelucchi M., Cavallotti C., Ranzi E., Frassoldati A., Faravelli T. // Energy Fuels. 2016. V. 30. P. 8665.
- Tran L., Verdicchio M., Monge F., Martin R., Bounaceeur R., Sirjean B., Glaude P.-A., Alzueta M., Battin-Leclerc F. // Combust. Flame. 2015. V. 162. P. 1899.
- Alexiou A., Williams A. // Combust. Flame. 1996. V. 104. P. 51.
- Frenklach M., Wang H. // Proc. Combust. Inst. 1991. V. 23. P. 1559.
- Krestinin A.V. // Symp. (Int.) Combust. 1998. V. 27. P. 1557.
- Vlasov P.A., Warnatz J. // Proc. Combust. Inst. 2002. V. 29. P. 2335.
- Gurentsov E.V., Drakon A.V., Eremin A.V., Kolotushkin R.N., Mikheyeva E.Yu. // High Temp. 2022. V. 60. P. 335.
- Eremin A.V. // PECS. 2012. V. 38. P. 1.
- Commodo M., Kaiser K., de Falco G., Minutolo P., Schulz F., d’Anna A., Gross L. // Combust. Flame. 2019. V. 205. P. 154.
Arquivos suplementares
