ОПЕРАТОРНО-РАЗНОСТНЫЕ СХЕМЫ ДЛЯ СИСТЕМЫ ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассмотрена задача Коши для системы из двух интегро-дифференциальных уравнений первого порядка с памятью в конечномерных гильбертовых пространствах с разностным ядром в интегральном члене. Такая математическая модель характерна для нестационарных электромагнитных процессов с учётом эффектов дисперсии электрического поля. Для приближённого решения рассматриваемой нелокальной задачи использована трансформация к локальной задаче Коши для системы уравнений первого порядка на основе аппроксимации разностного ядра суммой экспонент. Построены и исследованы на устойчивость двухслойные операторно-разностные схемы в гильбертовых пространствах.

Об авторах

П. Н Вабищевич

Московский государственный университет имени М.В. Ломоносова; Северо-Кавказский федеральный университет

Email: vab@cs.msu.ru
Москва, Россия; Ставрополь, Россия

Список литературы

  1. Dautray, К. Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 1. Physical Origins and Classical Methods / К. Dautray, J.-L. Lions. — Berlin : Springer, 2000. — 722 p.
  2. Evans, L.C. Partial Differential Equations / L.C. Evans. — Berkeley : American Mathematical Society, 2010. — 749 p.
  3. Gripenberg, G. Volterra Integral and Functional Equations / G. Gripenberg, S.-O. Londen, O. Staffans. — Cambridge : Cambridge University Press, 1990. — 725 p.
  4. Pru¨ss, J. Evolutionary Integral Equations and Applications / J. Pru¨ss. — Basel ; Boston : Birkha¨user, 1993. — 366 p.
  5. Ландау, Л.Д. Теоретическая физика : учеб. пособие для вузов : в 10 т. T. 8. Электродинамика сплошных сред / Л.Д. Ландау, Е.М. Лифшиц. — 4-е изд., стереотип. — М. : Физматлит, 2005. — 656 с.
  6. Knabner, P. Numerical Methods for Elliptic and Parabolic Partial Differential Equations / P. Knabner, L. Angermann. — New York etc. : Springer, 2003. — 439 p.
  7. Quarteroni, A. Numerical Approximation of Partial Differential Equations / A. Quarteroni, A. Valli. — Berlin : Springer, 1994. — 543 p.
  8. Chen, C. Finite Element Methods for Integrodifferential Equations / C. Chen, T. Shih. — World Scientific, 1998. — 292 p.
  9. Linz, P. Analytical and Numerical Methods for Volterra Equations / P. Linz. — Philadelphia : SIAM, 1985. — 240 p.
  10. Bohren, C.F. Absorption and Scattering of Light by Small Particles / C.F. Bohren, D.R. Huffman. — Wiley-VCH, 1983. — 544 p.
  11. Vabishchevich, P.N. Numerical solution of the Cauchy problem for Volterra integrodifferential equations with difference kernels / P.N. Vabishchevich // Appl. Num. Math. — 2022. — V. 174. — P. 177–190.
  12. Vabishchevich, P.N. Numerical-analytical methods for solving the Cauchy problem for evolutionary equations with memory / P.N. Vabishchevich // Lobachevskii J. Math. — 2023. — V. 44, № 10. — P. 4195–4204.
  13. Vabishchevich, P.N. Approximate solution of the Cauchy problem for a first-order integrodifferential equation with solution derivative memory / P.N. Vabishchevich // J. Comput. Appl. Math. — 2023. — V. 422. — Art. 114887.
  14. Вабищевич, П.Н. Об устойчивости приближённого решения задачи Коши для некоторых интегродифференциальных уравнений первого порядка / П.Н. Вабищевич // Журн. вычислит. математики и мат. физики. — 2023. — Т. 63, № 2. — С. 142–149.
  15. Вабищевич, П.Н. Численное решение задачи Коши для интегро-дифференциального уравнения второго порядка / П.Н. Вабищевич // Дифференц. уравнения. — 2022. — Т. 58, № 7. — С. 912–920.
  16. Vabishchevich, P.N. Numerical solution of the heat conduction problem with memory / P.N. Vabishchevich // Computers & Mathematics with Applications. — 2022. — V. 118. — P. 230–236.
  17. Halanay, A. On the asymptotic behavior of the solutions of an integro-differential equation / A. Halanay // J. Math. Anal. Appl. — 1965. — V. 10, № 2. — P. 319–324.
  18. Braess, D. Nonlinear Approximation Theory / D. Braess. — Springer-Verlag, 1986. — 290 p.
  19. Самарский, А.А. Теория разностных схем / А.А. Самарский. — 3-е изд., испр. — М. : Наука, 1989. — 616 с.
  20. Samarskii, A.A. Difference Schemes with Operator Factors / A.A. Samarskii, P.P. Matus, P.N. Vabishchevich. — Dordrecht : Kluwer Academic Publishers, 2002. — 384 p.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).