ON A PRIORI ESTIMATE OF PERIODIC SOLUTIONS OF THE SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS OF THE SECOND ORDER WITH THE MAIN POSITIVELY HOMOGENEOUS NONLINEARITY

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For the system of ordinary differential equations of the second order with the main positively homogeneous nonlinearity, an a priori estimate of periodic solutions of a fixed period is investigated. New conditions of a priori estimate are found, in which the influence of the properties of the main nonlinear part, including its set of zeros, is mediated by functional estimates from above and below. The feasibility of the new conditions is investigated for three types of nonlinearities.

Sobre autores

E. Mukhamadiev

Vologda State University

Email: emuhamadiev@rambler.ru
Russia

A. Naimov

Vologda State University

Email: naimovan@vogu35.ru
Russia

Bibliografia

  1. Krasnoselsky, M.A. and Zabreiko, P.P., Geometric Methods of Non-Linear Analysis, Berlin: Springer-Verlag, 1984.
  2. Naimov, A.N. and Khakimov, R.I., Estimation of derivatives of periodic solutions of one class of systems of nonlinear ordinary differential equations of the second order, Vestnik Tadzhikskogo natsional’nogo universiteta. Seriya yestestvennykh nauk, 2017, no. 1/5, pp. 12–16.
  3. Mukhamadiev, E. and Naimov, A.N., On the solvability of a periodic problem for a system of non-linear ordinary differential equations of second order, Differ. Equat., 2024, vol. 60, no. 3, pp. 286–295.
  4. Mukhamadiev, E. and Naimov, A.N., On the solvability of a periodic problem for a two-dimensional system of ordinary differential equations of the second order, Differ. Equat. Contr. Process., 2024, no. 2, pp. 46–58.
  5. Naimov, A.N., On the number of nonstationary bounded trajectories of a class of autonomous systems on the plane, Differ. Equat., 2008, vol. 44, no. 8, pp. 1082–1087.
  6. Mukhamadiev, E. and Naimov, A.N., On a priori estimate and the existence of periodic solutions for a class of systems of nonlinear ordinary differential equations, Russ. Math., 2022, vol. 66, no. 4, pp. 32–42.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).