A Time-Nonlocal Inverse Problem for the Beam Vibration Equation with an Integral Condition

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study the direct problem for transverse vibrations of a homogeneous beam of finite length with time-nonlocal conditions and obtain necessary and sufficient conditions for the existence of its solution. For the direct problem, the inverse problem of determining the time-dependent coefficients of the lower derivative and the right-hand side in the equation is studied. The existence and uniqueness of the solution of the inverse problem are proved. The solution is based on separation of variables, which is used to reduce the problems to an integral equation and a system of integral equations.

Авторлар туралы

U. Durdiev

Bukhara State University, Bukhara, 200114, Uzbekistan; Bukhara Branch of Romanovskii Institute of Mathematics, Uzbekistan Academy of Sciences, Bukhara, Uzbekistan

Хат алмасуға жауапты Автор.
Email: umidjan93@mail.ru

Әдебиет тізімі

  1. Тихонов А.Н., Самарский A.A. Уравнения математической физики. M., 1966.
  2. Гусев Б.В., Саурин В.В. О колебаниях неоднородных балок // Инж. вестн. Дона. 2017. http:// ivdon.ru/ru/magazine/archive/n3y2017/4312.
  3. Baysal O., Hasanov A. Solvability of the clamped Euler-Bernoulli beam equation // Appl. Math. Lett. 2019. V. 93. P. 85-90.
  4. Сабитов К.Б. Колебания балки с заделанными концами // Вестн. Самарского гос. техн. ун-та. Сер. Физ.-мат. науки. 2015. T. 19. № 2. C. 311-324.
  5. Сабитов К.Б., Акимов А.А. Начально-граничная задача для нелинейного уравнения колебаний балки // Дифференц. уравнения. 2020. Т. 56. № 5. С. 632-645.
  6. Касимов Ш.Г., Мадрахимов У.С. Начально-граничная задача для уравнения колебаний балки в многомерном случае // Дифференц. уравнения. 2019. Т. 55. № 10. С. 1379-1391.
  7. Karchevsky A.L. Analytical solutions to the differential equation of transverse vibrations of a piecewise homogeneous beam in the frequency domain for the boundary conditions of various types // J. of Appl. and Industr. Math. 2020. T. 14. № 4. C. 648-665.
  8. Дурдиев Д.К., Тотиева Ж.Д. Задача об определении одномерного ядра уравнения электровязкоупругости // Сиб. мат. журн. 2017. Т. 58. № 3. С. 553-572.
  9. Дурv U.D. An inverse problem for the system of viscoelasticity equations in homogeneous anisotropic media // J. of Appl. and Industr. Math. 2019. V. 13. № 4. P.
  10. Romanov V.G. A problem of recovering a special two dimension potential in a hyperbolic equation // Eur. J. Math. Comput. Appl. 2016. V. 4. № 1. P. 32-46.
  11. Durdiev U.D. A problem of identification of a special 2D memory kernel in an integro-differential hyperbolic equation // Eur. J. Math. Comput. Appl. 2019. V. 7. № 2. P. 4-19.
  12. Durdiev U.D., Totieva Zh.D. A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation // Math. Methods Appl. Sci. 2019. V. 42. № 18. P. 1-12.
  13. Дурдиев У.Д. Обратная задача по определению неизвестного коэффициента в уравнении колебания балки // Дифференц. уравнения. 2022. Т. 58. № 1. С. 37-44.
  14. Карчевский А.Л., Фатьянов А.Г. Численное решение обратной задачи для системы упругости с последействием для вертикально неоднородной среды // Сиб. журн. вычислит. математики. 2001. Т. 4. № 3. С. 259-268.
  15. Карчевский А.Л. Определение возможности горного удара в угольном пласте // Сиб. журн. индустр. математики. 2017. Т. 20. № 4. С. 35-43.
  16. Дурдиев У.Д. Численное определение зависимости диэлектрической проницаемости слоистой среды от временн'ой частоты // Сиб. электрон. мат. изв. 2020. Т. 17. C. 179-189.
  17. Maciag A., Pawinska A. Solution of the direct and inverse problems for beam // Comp. Appl. Math. 2016. V. 35. P. 187-201.
  18. Maciag A., Pawinska A. Solving direct and inverse problems of plate vibration by using the trefftz functions // J. of Theor. and Appl. Mech. 2013. V. 51. № 3. P. 543-552.
  19. Guojin Tan, Jinghui Shan, Chunli Wu, Wensheng Wang. Direct and inverse problems on free vibration of cracked multiple I-section beam with different boundary conditions // Adv. in Mech. Engin. 2017. V. 9. № 11. P. 1-17.
  20. Moaveni S., Hyde R. Reconstruction of the area-moment-of-inertia of a beam using a shifting load and the end-slope data // Inverse Problems in Science and Engineering. 2016. V. 24. № 6. P. 990-1010.
  21. Marinov T.T., Vatsala A.S. Inverse problem for coefficient identification in the Euler-Bernoulli equation // Comput. and Math. with Appl. 2008. V. 56. P. 400-410.
  22. Megraliev Ya.T., Azizbayov E.I. A time-nonlocal inverse problem for a hyperbolic equation with an integral overdetermination condition // Electron. J. of Qualitative Theory of Differen. Equat. 2021. № 28. P. 1-12.
  23. Xiao-Li Dingдиев Д.К., Рахмонов А.А. Задача об определении двумерного ядра в системе интегродифференциальных уравнений вязкоупругой пористой среды // Сиб. журн. индустр. математики. 2020. Т. 23. № 2. С. 63-80.
  24. Durdie, Bashir Ahmad. A generalized Volterra-Fredholm integral inequality and its applications to fractional differential equations // Adv. in Difference Equat. 2018. V. 2018. Art. 91.
  25. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Application of Fractional Differential Equations. Amsterdam, 2006.
  26. Tekin I., Mehraliyev Y.T., Ismailov M.I. Existence and uniqueness of an inverse problem for nonlinear Klein-Gordon equation // Math. Methods Appl. Sci. 2019. V. 42. № 10. P. 3739-3753.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».